| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqcl2.1 |
|- ( ph -> ( F ` M ) e. C ) |
| 2 |
|
seqcl2.2 |
|- ( ( ph /\ ( x e. C /\ y e. D ) ) -> ( x .+ y ) e. C ) |
| 3 |
|
seqcl2.3 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 4 |
|
seqcl2.4 |
|- ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> ( F ` x ) e. D ) |
| 5 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
| 6 |
3 5
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
| 7 |
|
eleq1 |
|- ( x = M -> ( x e. ( M ... N ) <-> M e. ( M ... N ) ) ) |
| 8 |
|
fveq2 |
|- ( x = M -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` M ) ) |
| 9 |
8
|
eleq1d |
|- ( x = M -> ( ( seq M ( .+ , F ) ` x ) e. C <-> ( seq M ( .+ , F ) ` M ) e. C ) ) |
| 10 |
7 9
|
imbi12d |
|- ( x = M -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) <-> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) e. C ) ) ) |
| 11 |
10
|
imbi2d |
|- ( x = M -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) ) <-> ( ph -> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) e. C ) ) ) ) |
| 12 |
|
eleq1 |
|- ( x = n -> ( x e. ( M ... N ) <-> n e. ( M ... N ) ) ) |
| 13 |
|
fveq2 |
|- ( x = n -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` n ) ) |
| 14 |
13
|
eleq1d |
|- ( x = n -> ( ( seq M ( .+ , F ) ` x ) e. C <-> ( seq M ( .+ , F ) ` n ) e. C ) ) |
| 15 |
12 14
|
imbi12d |
|- ( x = n -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) <-> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) e. C ) ) ) |
| 16 |
15
|
imbi2d |
|- ( x = n -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) ) <-> ( ph -> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) e. C ) ) ) ) |
| 17 |
|
eleq1 |
|- ( x = ( n + 1 ) -> ( x e. ( M ... N ) <-> ( n + 1 ) e. ( M ... N ) ) ) |
| 18 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) |
| 19 |
18
|
eleq1d |
|- ( x = ( n + 1 ) -> ( ( seq M ( .+ , F ) ` x ) e. C <-> ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C ) ) |
| 20 |
17 19
|
imbi12d |
|- ( x = ( n + 1 ) -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) <-> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C ) ) ) |
| 21 |
20
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) ) <-> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C ) ) ) ) |
| 22 |
|
eleq1 |
|- ( x = N -> ( x e. ( M ... N ) <-> N e. ( M ... N ) ) ) |
| 23 |
|
fveq2 |
|- ( x = N -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` N ) ) |
| 24 |
23
|
eleq1d |
|- ( x = N -> ( ( seq M ( .+ , F ) ` x ) e. C <-> ( seq M ( .+ , F ) ` N ) e. C ) ) |
| 25 |
22 24
|
imbi12d |
|- ( x = N -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) <-> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) e. C ) ) ) |
| 26 |
25
|
imbi2d |
|- ( x = N -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) ) <-> ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) e. C ) ) ) ) |
| 27 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 28 |
27
|
eleq1d |
|- ( M e. ZZ -> ( ( seq M ( .+ , F ) ` M ) e. C <-> ( F ` M ) e. C ) ) |
| 29 |
1 28
|
imbitrrid |
|- ( M e. ZZ -> ( ph -> ( seq M ( .+ , F ) ` M ) e. C ) ) |
| 30 |
29
|
a1dd |
|- ( M e. ZZ -> ( ph -> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) e. C ) ) ) |
| 31 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) -> n e. ( M ... N ) ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( M ... N ) ) |
| 33 |
32
|
expr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n + 1 ) e. ( M ... N ) -> n e. ( M ... N ) ) ) |
| 34 |
33
|
imim1d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) e. C ) -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) e. C ) ) ) |
| 35 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( F ` x ) = ( F ` ( n + 1 ) ) ) |
| 36 |
35
|
eleq1d |
|- ( x = ( n + 1 ) -> ( ( F ` x ) e. D <-> ( F ` ( n + 1 ) ) e. D ) ) |
| 37 |
4
|
ralrimiva |
|- ( ph -> A. x e. ( ( M + 1 ) ... N ) ( F ` x ) e. D ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. x e. ( ( M + 1 ) ... N ) ( F ` x ) e. D ) |
| 39 |
|
eluzp1p1 |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 40 |
39
|
ad2antrl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( n + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 41 |
|
elfzuz3 |
|- ( ( n + 1 ) e. ( M ... N ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
| 42 |
41
|
ad2antll |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
| 43 |
|
elfzuzb |
|- ( ( n + 1 ) e. ( ( M + 1 ) ... N ) <-> ( ( n + 1 ) e. ( ZZ>= ` ( M + 1 ) ) /\ N e. ( ZZ>= ` ( n + 1 ) ) ) ) |
| 44 |
40 42 43
|
sylanbrc |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( n + 1 ) e. ( ( M + 1 ) ... N ) ) |
| 45 |
36 38 44
|
rspcdva |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` ( n + 1 ) ) e. D ) |
| 46 |
2
|
caovclg |
|- ( ( ph /\ ( ( seq M ( .+ , F ) ` n ) e. C /\ ( F ` ( n + 1 ) ) e. D ) ) -> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) e. C ) |
| 47 |
46
|
ex |
|- ( ph -> ( ( ( seq M ( .+ , F ) ` n ) e. C /\ ( F ` ( n + 1 ) ) e. D ) -> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) e. C ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( ( seq M ( .+ , F ) ` n ) e. C /\ ( F ` ( n + 1 ) ) e. D ) -> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) e. C ) ) |
| 49 |
45 48
|
mpan2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq M ( .+ , F ) ` n ) e. C -> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) e. C ) ) |
| 50 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 51 |
50
|
ad2antrl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 52 |
51
|
eleq1d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C <-> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) e. C ) ) |
| 53 |
49 52
|
sylibrd |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq M ( .+ , F ) ` n ) e. C -> ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C ) ) |
| 54 |
34 53
|
animpimp2impd |
|- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) e. C ) ) -> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C ) ) ) ) |
| 55 |
11 16 21 26 30 54
|
uzind4 |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) e. C ) ) ) |
| 56 |
3 55
|
mpcom |
|- ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) e. C ) ) |
| 57 |
6 56
|
mpd |
|- ( ph -> ( seq M ( .+ , F ) ` N ) e. C ) |