Step |
Hyp |
Ref |
Expression |
1 |
|
seqcl2.1 |
|- ( ph -> ( F ` M ) e. C ) |
2 |
|
seqcl2.2 |
|- ( ( ph /\ ( x e. C /\ y e. D ) ) -> ( x .+ y ) e. C ) |
3 |
|
seqcl2.3 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
4 |
|
seqcl2.4 |
|- ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> ( F ` x ) e. D ) |
5 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
6 |
3 5
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
7 |
|
eleq1 |
|- ( x = M -> ( x e. ( M ... N ) <-> M e. ( M ... N ) ) ) |
8 |
|
fveq2 |
|- ( x = M -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` M ) ) |
9 |
8
|
eleq1d |
|- ( x = M -> ( ( seq M ( .+ , F ) ` x ) e. C <-> ( seq M ( .+ , F ) ` M ) e. C ) ) |
10 |
7 9
|
imbi12d |
|- ( x = M -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) <-> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) e. C ) ) ) |
11 |
10
|
imbi2d |
|- ( x = M -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) ) <-> ( ph -> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) e. C ) ) ) ) |
12 |
|
eleq1 |
|- ( x = n -> ( x e. ( M ... N ) <-> n e. ( M ... N ) ) ) |
13 |
|
fveq2 |
|- ( x = n -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` n ) ) |
14 |
13
|
eleq1d |
|- ( x = n -> ( ( seq M ( .+ , F ) ` x ) e. C <-> ( seq M ( .+ , F ) ` n ) e. C ) ) |
15 |
12 14
|
imbi12d |
|- ( x = n -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) <-> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) e. C ) ) ) |
16 |
15
|
imbi2d |
|- ( x = n -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) ) <-> ( ph -> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) e. C ) ) ) ) |
17 |
|
eleq1 |
|- ( x = ( n + 1 ) -> ( x e. ( M ... N ) <-> ( n + 1 ) e. ( M ... N ) ) ) |
18 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) |
19 |
18
|
eleq1d |
|- ( x = ( n + 1 ) -> ( ( seq M ( .+ , F ) ` x ) e. C <-> ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C ) ) |
20 |
17 19
|
imbi12d |
|- ( x = ( n + 1 ) -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) <-> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C ) ) ) |
21 |
20
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) ) <-> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C ) ) ) ) |
22 |
|
eleq1 |
|- ( x = N -> ( x e. ( M ... N ) <-> N e. ( M ... N ) ) ) |
23 |
|
fveq2 |
|- ( x = N -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` N ) ) |
24 |
23
|
eleq1d |
|- ( x = N -> ( ( seq M ( .+ , F ) ` x ) e. C <-> ( seq M ( .+ , F ) ` N ) e. C ) ) |
25 |
22 24
|
imbi12d |
|- ( x = N -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) <-> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) e. C ) ) ) |
26 |
25
|
imbi2d |
|- ( x = N -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) e. C ) ) <-> ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) e. C ) ) ) ) |
27 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
28 |
27
|
eleq1d |
|- ( M e. ZZ -> ( ( seq M ( .+ , F ) ` M ) e. C <-> ( F ` M ) e. C ) ) |
29 |
1 28
|
syl5ibr |
|- ( M e. ZZ -> ( ph -> ( seq M ( .+ , F ) ` M ) e. C ) ) |
30 |
29
|
a1dd |
|- ( M e. ZZ -> ( ph -> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) e. C ) ) ) |
31 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) -> n e. ( M ... N ) ) |
32 |
31
|
adantl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( M ... N ) ) |
33 |
32
|
expr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n + 1 ) e. ( M ... N ) -> n e. ( M ... N ) ) ) |
34 |
33
|
imim1d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) e. C ) -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) e. C ) ) ) |
35 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( F ` x ) = ( F ` ( n + 1 ) ) ) |
36 |
35
|
eleq1d |
|- ( x = ( n + 1 ) -> ( ( F ` x ) e. D <-> ( F ` ( n + 1 ) ) e. D ) ) |
37 |
4
|
ralrimiva |
|- ( ph -> A. x e. ( ( M + 1 ) ... N ) ( F ` x ) e. D ) |
38 |
37
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. x e. ( ( M + 1 ) ... N ) ( F ` x ) e. D ) |
39 |
|
eluzp1p1 |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
40 |
39
|
ad2antrl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( n + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
41 |
|
elfzuz3 |
|- ( ( n + 1 ) e. ( M ... N ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
42 |
41
|
ad2antll |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
43 |
|
elfzuzb |
|- ( ( n + 1 ) e. ( ( M + 1 ) ... N ) <-> ( ( n + 1 ) e. ( ZZ>= ` ( M + 1 ) ) /\ N e. ( ZZ>= ` ( n + 1 ) ) ) ) |
44 |
40 42 43
|
sylanbrc |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( n + 1 ) e. ( ( M + 1 ) ... N ) ) |
45 |
36 38 44
|
rspcdva |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` ( n + 1 ) ) e. D ) |
46 |
2
|
caovclg |
|- ( ( ph /\ ( ( seq M ( .+ , F ) ` n ) e. C /\ ( F ` ( n + 1 ) ) e. D ) ) -> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) e. C ) |
47 |
46
|
ex |
|- ( ph -> ( ( ( seq M ( .+ , F ) ` n ) e. C /\ ( F ` ( n + 1 ) ) e. D ) -> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) e. C ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( ( seq M ( .+ , F ) ` n ) e. C /\ ( F ` ( n + 1 ) ) e. D ) -> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) e. C ) ) |
49 |
45 48
|
mpan2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq M ( .+ , F ) ` n ) e. C -> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) e. C ) ) |
50 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
51 |
50
|
ad2antrl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
52 |
51
|
eleq1d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C <-> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) e. C ) ) |
53 |
49 52
|
sylibrd |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq M ( .+ , F ) ` n ) e. C -> ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C ) ) |
54 |
34 53
|
animpimp2impd |
|- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) e. C ) ) -> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) e. C ) ) ) ) |
55 |
11 16 21 26 30 54
|
uzind4 |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) e. C ) ) ) |
56 |
3 55
|
mpcom |
|- ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) e. C ) ) |
57 |
6 56
|
mpd |
|- ( ph -> ( seq M ( .+ , F ) ` N ) e. C ) |