| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqcoll.1 |
|- ( ( ph /\ k e. S ) -> ( Z .+ k ) = k ) |
| 2 |
|
seqcoll.1b |
|- ( ( ph /\ k e. S ) -> ( k .+ Z ) = k ) |
| 3 |
|
seqcoll.c |
|- ( ( ph /\ ( k e. S /\ n e. S ) ) -> ( k .+ n ) e. S ) |
| 4 |
|
seqcoll.a |
|- ( ph -> Z e. S ) |
| 5 |
|
seqcoll.2 |
|- ( ph -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 6 |
|
seqcoll.3 |
|- ( ph -> N e. ( 1 ... ( # ` A ) ) ) |
| 7 |
|
seqcoll.4 |
|- ( ph -> A C_ ( ZZ>= ` M ) ) |
| 8 |
|
seqcoll.5 |
|- ( ( ph /\ k e. ( M ... ( G ` ( # ` A ) ) ) ) -> ( F ` k ) e. S ) |
| 9 |
|
seqcoll.6 |
|- ( ( ph /\ k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) -> ( F ` k ) = Z ) |
| 10 |
|
seqcoll.7 |
|- ( ( ph /\ n e. ( 1 ... ( # ` A ) ) ) -> ( H ` n ) = ( F ` ( G ` n ) ) ) |
| 11 |
|
elfznn |
|- ( N e. ( 1 ... ( # ` A ) ) -> N e. NN ) |
| 12 |
6 11
|
syl |
|- ( ph -> N e. NN ) |
| 13 |
|
eleq1 |
|- ( y = 1 -> ( y e. ( 1 ... ( # ` A ) ) <-> 1 e. ( 1 ... ( # ` A ) ) ) ) |
| 14 |
|
2fveq3 |
|- ( y = 1 -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` 1 ) ) ) |
| 15 |
|
fveq2 |
|- ( y = 1 -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` 1 ) ) |
| 16 |
14 15
|
eqeq12d |
|- ( y = 1 -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) |
| 17 |
13 16
|
imbi12d |
|- ( y = 1 -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( 1 e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) ) |
| 18 |
17
|
imbi2d |
|- ( y = 1 -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( 1 e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) ) ) |
| 19 |
|
eleq1 |
|- ( y = m -> ( y e. ( 1 ... ( # ` A ) ) <-> m e. ( 1 ... ( # ` A ) ) ) ) |
| 20 |
|
2fveq3 |
|- ( y = m -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` m ) ) ) |
| 21 |
|
fveq2 |
|- ( y = m -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` m ) ) |
| 22 |
20 21
|
eqeq12d |
|- ( y = m -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) |
| 23 |
19 22
|
imbi12d |
|- ( y = m -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) ) |
| 24 |
23
|
imbi2d |
|- ( y = m -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) ) ) |
| 25 |
|
eleq1 |
|- ( y = ( m + 1 ) -> ( y e. ( 1 ... ( # ` A ) ) <-> ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) ) |
| 26 |
|
2fveq3 |
|- ( y = ( m + 1 ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) ) |
| 27 |
|
fveq2 |
|- ( y = ( m + 1 ) -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) |
| 28 |
26 27
|
eqeq12d |
|- ( y = ( m + 1 ) -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) |
| 29 |
25 28
|
imbi12d |
|- ( y = ( m + 1 ) -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
| 30 |
29
|
imbi2d |
|- ( y = ( m + 1 ) -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) ) |
| 31 |
|
eleq1 |
|- ( y = N -> ( y e. ( 1 ... ( # ` A ) ) <-> N e. ( 1 ... ( # ` A ) ) ) ) |
| 32 |
|
2fveq3 |
|- ( y = N -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` N ) ) ) |
| 33 |
|
fveq2 |
|- ( y = N -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` N ) ) |
| 34 |
32 33
|
eqeq12d |
|- ( y = N -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) |
| 35 |
31 34
|
imbi12d |
|- ( y = N -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) ) |
| 36 |
35
|
imbi2d |
|- ( y = N -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) ) ) |
| 37 |
|
isof1o |
|- ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 38 |
5 37
|
syl |
|- ( ph -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 39 |
|
f1of |
|- ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> G : ( 1 ... ( # ` A ) ) --> A ) |
| 40 |
38 39
|
syl |
|- ( ph -> G : ( 1 ... ( # ` A ) ) --> A ) |
| 41 |
|
elfzuz2 |
|- ( N e. ( 1 ... ( # ` A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 42 |
6 41
|
syl |
|- ( ph -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 43 |
|
eluzfz1 |
|- ( ( # ` A ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( # ` A ) ) ) |
| 44 |
42 43
|
syl |
|- ( ph -> 1 e. ( 1 ... ( # ` A ) ) ) |
| 45 |
40 44
|
ffvelcdmd |
|- ( ph -> ( G ` 1 ) e. A ) |
| 46 |
7 45
|
sseldd |
|- ( ph -> ( G ` 1 ) e. ( ZZ>= ` M ) ) |
| 47 |
|
eluzle |
|- ( ( # ` A ) e. ( ZZ>= ` 1 ) -> 1 <_ ( # ` A ) ) |
| 48 |
42 47
|
syl |
|- ( ph -> 1 <_ ( # ` A ) ) |
| 49 |
|
fzssz |
|- ( 1 ... ( # ` A ) ) C_ ZZ |
| 50 |
|
zssre |
|- ZZ C_ RR |
| 51 |
49 50
|
sstri |
|- ( 1 ... ( # ` A ) ) C_ RR |
| 52 |
51
|
a1i |
|- ( ph -> ( 1 ... ( # ` A ) ) C_ RR ) |
| 53 |
|
ressxr |
|- RR C_ RR* |
| 54 |
52 53
|
sstrdi |
|- ( ph -> ( 1 ... ( # ` A ) ) C_ RR* ) |
| 55 |
|
eluzelre |
|- ( k e. ( ZZ>= ` M ) -> k e. RR ) |
| 56 |
55
|
ssriv |
|- ( ZZ>= ` M ) C_ RR |
| 57 |
7 56
|
sstrdi |
|- ( ph -> A C_ RR ) |
| 58 |
57 53
|
sstrdi |
|- ( ph -> A C_ RR* ) |
| 59 |
|
eluzfz2 |
|- ( ( # ` A ) e. ( ZZ>= ` 1 ) -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
| 60 |
42 59
|
syl |
|- ( ph -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
| 61 |
|
leisorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( 1 ... ( # ` A ) ) C_ RR* /\ A C_ RR* ) /\ ( 1 e. ( 1 ... ( # ` A ) ) /\ ( # ` A ) e. ( 1 ... ( # ` A ) ) ) ) -> ( 1 <_ ( # ` A ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 62 |
5 54 58 44 60 61
|
syl122anc |
|- ( ph -> ( 1 <_ ( # ` A ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 63 |
48 62
|
mpbid |
|- ( ph -> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) |
| 64 |
40 60
|
ffvelcdmd |
|- ( ph -> ( G ` ( # ` A ) ) e. A ) |
| 65 |
7 64
|
sseldd |
|- ( ph -> ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) ) |
| 66 |
|
eluzelz |
|- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) -> ( G ` ( # ` A ) ) e. ZZ ) |
| 67 |
65 66
|
syl |
|- ( ph -> ( G ` ( # ` A ) ) e. ZZ ) |
| 68 |
|
elfz5 |
|- ( ( ( G ` 1 ) e. ( ZZ>= ` M ) /\ ( G ` ( # ` A ) ) e. ZZ ) -> ( ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 69 |
46 67 68
|
syl2anc |
|- ( ph -> ( ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 70 |
63 69
|
mpbird |
|- ( ph -> ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) ) |
| 71 |
|
fveq2 |
|- ( k = ( G ` 1 ) -> ( F ` k ) = ( F ` ( G ` 1 ) ) ) |
| 72 |
71
|
eleq1d |
|- ( k = ( G ` 1 ) -> ( ( F ` k ) e. S <-> ( F ` ( G ` 1 ) ) e. S ) ) |
| 73 |
72
|
imbi2d |
|- ( k = ( G ` 1 ) -> ( ( ph -> ( F ` k ) e. S ) <-> ( ph -> ( F ` ( G ` 1 ) ) e. S ) ) ) |
| 74 |
8
|
expcom |
|- ( k e. ( M ... ( G ` ( # ` A ) ) ) -> ( ph -> ( F ` k ) e. S ) ) |
| 75 |
73 74
|
vtoclga |
|- ( ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) -> ( ph -> ( F ` ( G ` 1 ) ) e. S ) ) |
| 76 |
70 75
|
mpcom |
|- ( ph -> ( F ` ( G ` 1 ) ) e. S ) |
| 77 |
|
eluzelz |
|- ( ( G ` 1 ) e. ( ZZ>= ` M ) -> ( G ` 1 ) e. ZZ ) |
| 78 |
46 77
|
syl |
|- ( ph -> ( G ` 1 ) e. ZZ ) |
| 79 |
|
peano2zm |
|- ( ( G ` 1 ) e. ZZ -> ( ( G ` 1 ) - 1 ) e. ZZ ) |
| 80 |
78 79
|
syl |
|- ( ph -> ( ( G ` 1 ) - 1 ) e. ZZ ) |
| 81 |
80
|
zred |
|- ( ph -> ( ( G ` 1 ) - 1 ) e. RR ) |
| 82 |
78
|
zred |
|- ( ph -> ( G ` 1 ) e. RR ) |
| 83 |
67
|
zred |
|- ( ph -> ( G ` ( # ` A ) ) e. RR ) |
| 84 |
82
|
lem1d |
|- ( ph -> ( ( G ` 1 ) - 1 ) <_ ( G ` 1 ) ) |
| 85 |
81 82 83 84 63
|
letrd |
|- ( ph -> ( ( G ` 1 ) - 1 ) <_ ( G ` ( # ` A ) ) ) |
| 86 |
|
eluz |
|- ( ( ( ( G ` 1 ) - 1 ) e. ZZ /\ ( G ` ( # ` A ) ) e. ZZ ) -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) <-> ( ( G ` 1 ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 87 |
80 67 86
|
syl2anc |
|- ( ph -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) <-> ( ( G ` 1 ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 88 |
85 87
|
mpbird |
|- ( ph -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) ) |
| 89 |
|
fzss2 |
|- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) -> ( M ... ( ( G ` 1 ) - 1 ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
| 90 |
88 89
|
syl |
|- ( ph -> ( M ... ( ( G ` 1 ) - 1 ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
| 91 |
90
|
sselda |
|- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> k e. ( M ... ( G ` ( # ` A ) ) ) ) |
| 92 |
|
eluzel2 |
|- ( ( G ` 1 ) e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 93 |
46 92
|
syl |
|- ( ph -> M e. ZZ ) |
| 94 |
|
elfzm11 |
|- ( ( M e. ZZ /\ ( G ` 1 ) e. ZZ ) -> ( k e. ( M ... ( ( G ` 1 ) - 1 ) ) <-> ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) ) ) |
| 95 |
93 78 94
|
syl2anc |
|- ( ph -> ( k e. ( M ... ( ( G ` 1 ) - 1 ) ) <-> ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) ) ) |
| 96 |
|
simp3 |
|- ( ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) -> k < ( G ` 1 ) ) |
| 97 |
82
|
adantr |
|- ( ( ph /\ k e. A ) -> ( G ` 1 ) e. RR ) |
| 98 |
57
|
sselda |
|- ( ( ph /\ k e. A ) -> k e. RR ) |
| 99 |
|
f1ocnv |
|- ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) ) |
| 100 |
38 99
|
syl |
|- ( ph -> `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) ) |
| 101 |
|
f1of |
|- ( `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
| 102 |
100 101
|
syl |
|- ( ph -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
| 103 |
102
|
ffvelcdmda |
|- ( ( ph /\ k e. A ) -> ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) |
| 104 |
|
elfznn |
|- ( ( `' G ` k ) e. ( 1 ... ( # ` A ) ) -> ( `' G ` k ) e. NN ) |
| 105 |
103 104
|
syl |
|- ( ( ph /\ k e. A ) -> ( `' G ` k ) e. NN ) |
| 106 |
105
|
nnge1d |
|- ( ( ph /\ k e. A ) -> 1 <_ ( `' G ` k ) ) |
| 107 |
5
|
adantr |
|- ( ( ph /\ k e. A ) -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 108 |
54
|
adantr |
|- ( ( ph /\ k e. A ) -> ( 1 ... ( # ` A ) ) C_ RR* ) |
| 109 |
58
|
adantr |
|- ( ( ph /\ k e. A ) -> A C_ RR* ) |
| 110 |
44
|
adantr |
|- ( ( ph /\ k e. A ) -> 1 e. ( 1 ... ( # ` A ) ) ) |
| 111 |
|
leisorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( 1 ... ( # ` A ) ) C_ RR* /\ A C_ RR* ) /\ ( 1 e. ( 1 ... ( # ` A ) ) /\ ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) ) -> ( 1 <_ ( `' G ` k ) <-> ( G ` 1 ) <_ ( G ` ( `' G ` k ) ) ) ) |
| 112 |
107 108 109 110 103 111
|
syl122anc |
|- ( ( ph /\ k e. A ) -> ( 1 <_ ( `' G ` k ) <-> ( G ` 1 ) <_ ( G ` ( `' G ` k ) ) ) ) |
| 113 |
106 112
|
mpbid |
|- ( ( ph /\ k e. A ) -> ( G ` 1 ) <_ ( G ` ( `' G ` k ) ) ) |
| 114 |
|
f1ocnvfv2 |
|- ( ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ k e. A ) -> ( G ` ( `' G ` k ) ) = k ) |
| 115 |
38 114
|
sylan |
|- ( ( ph /\ k e. A ) -> ( G ` ( `' G ` k ) ) = k ) |
| 116 |
113 115
|
breqtrd |
|- ( ( ph /\ k e. A ) -> ( G ` 1 ) <_ k ) |
| 117 |
97 98 116
|
lensymd |
|- ( ( ph /\ k e. A ) -> -. k < ( G ` 1 ) ) |
| 118 |
117
|
ex |
|- ( ph -> ( k e. A -> -. k < ( G ` 1 ) ) ) |
| 119 |
118
|
con2d |
|- ( ph -> ( k < ( G ` 1 ) -> -. k e. A ) ) |
| 120 |
96 119
|
syl5 |
|- ( ph -> ( ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) -> -. k e. A ) ) |
| 121 |
95 120
|
sylbid |
|- ( ph -> ( k e. ( M ... ( ( G ` 1 ) - 1 ) ) -> -. k e. A ) ) |
| 122 |
121
|
imp |
|- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> -. k e. A ) |
| 123 |
91 122
|
eldifd |
|- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) |
| 124 |
123 9
|
syldan |
|- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> ( F ` k ) = Z ) |
| 125 |
1 4 46 76 124
|
seqid |
|- ( ph -> ( seq M ( .+ , F ) |` ( ZZ>= ` ( G ` 1 ) ) ) = seq ( G ` 1 ) ( .+ , F ) ) |
| 126 |
125
|
fveq1d |
|- ( ph -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` ( G ` 1 ) ) ) ` ( G ` 1 ) ) = ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) ) |
| 127 |
|
uzid |
|- ( ( G ` 1 ) e. ZZ -> ( G ` 1 ) e. ( ZZ>= ` ( G ` 1 ) ) ) |
| 128 |
78 127
|
syl |
|- ( ph -> ( G ` 1 ) e. ( ZZ>= ` ( G ` 1 ) ) ) |
| 129 |
128
|
fvresd |
|- ( ph -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` ( G ` 1 ) ) ) ` ( G ` 1 ) ) = ( seq M ( .+ , F ) ` ( G ` 1 ) ) ) |
| 130 |
|
seq1 |
|- ( ( G ` 1 ) e. ZZ -> ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) = ( F ` ( G ` 1 ) ) ) |
| 131 |
78 130
|
syl |
|- ( ph -> ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) = ( F ` ( G ` 1 ) ) ) |
| 132 |
|
fveq2 |
|- ( n = 1 -> ( H ` n ) = ( H ` 1 ) ) |
| 133 |
|
2fveq3 |
|- ( n = 1 -> ( F ` ( G ` n ) ) = ( F ` ( G ` 1 ) ) ) |
| 134 |
132 133
|
eqeq12d |
|- ( n = 1 -> ( ( H ` n ) = ( F ` ( G ` n ) ) <-> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) ) |
| 135 |
134
|
imbi2d |
|- ( n = 1 -> ( ( ph -> ( H ` n ) = ( F ` ( G ` n ) ) ) <-> ( ph -> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) ) ) |
| 136 |
10
|
expcom |
|- ( n e. ( 1 ... ( # ` A ) ) -> ( ph -> ( H ` n ) = ( F ` ( G ` n ) ) ) ) |
| 137 |
135 136
|
vtoclga |
|- ( 1 e. ( 1 ... ( # ` A ) ) -> ( ph -> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) ) |
| 138 |
44 137
|
mpcom |
|- ( ph -> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) |
| 139 |
131 138
|
eqtr4d |
|- ( ph -> ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) = ( H ` 1 ) ) |
| 140 |
126 129 139
|
3eqtr3d |
|- ( ph -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( H ` 1 ) ) |
| 141 |
|
1z |
|- 1 e. ZZ |
| 142 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( .+ , H ) ` 1 ) = ( H ` 1 ) ) |
| 143 |
141 142
|
ax-mp |
|- ( seq 1 ( .+ , H ) ` 1 ) = ( H ` 1 ) |
| 144 |
140 143
|
eqtr4di |
|- ( ph -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) |
| 145 |
144
|
a1d |
|- ( ph -> ( 1 e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) |
| 146 |
|
simplr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. NN ) |
| 147 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 148 |
146 147
|
eleqtrdi |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. ( ZZ>= ` 1 ) ) |
| 149 |
|
nnz |
|- ( m e. NN -> m e. ZZ ) |
| 150 |
149
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. ZZ ) |
| 151 |
|
elfzuz3 |
|- ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( # ` A ) e. ( ZZ>= ` ( m + 1 ) ) ) |
| 152 |
151
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( # ` A ) e. ( ZZ>= ` ( m + 1 ) ) ) |
| 153 |
|
peano2uzr |
|- ( ( m e. ZZ /\ ( # ` A ) e. ( ZZ>= ` ( m + 1 ) ) ) -> ( # ` A ) e. ( ZZ>= ` m ) ) |
| 154 |
150 152 153
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( # ` A ) e. ( ZZ>= ` m ) ) |
| 155 |
|
elfzuzb |
|- ( m e. ( 1 ... ( # ` A ) ) <-> ( m e. ( ZZ>= ` 1 ) /\ ( # ` A ) e. ( ZZ>= ` m ) ) ) |
| 156 |
148 154 155
|
sylanbrc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. ( 1 ... ( # ` A ) ) ) |
| 157 |
156
|
ex |
|- ( ( ph /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> m e. ( 1 ... ( # ` A ) ) ) ) |
| 158 |
157
|
imim1d |
|- ( ( ph /\ m e. NN ) -> ( ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) ) |
| 159 |
|
oveq1 |
|- ( ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) |
| 160 |
2
|
ad4ant14 |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. S ) -> ( k .+ Z ) = k ) |
| 161 |
7
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> A C_ ( ZZ>= ` M ) ) |
| 162 |
40
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> G : ( 1 ... ( # ` A ) ) --> A ) |
| 163 |
162 156
|
ffvelcdmd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) e. A ) |
| 164 |
161 163
|
sseldd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) e. ( ZZ>= ` M ) ) |
| 165 |
|
nnre |
|- ( m e. NN -> m e. RR ) |
| 166 |
165
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. RR ) |
| 167 |
166
|
ltp1d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m < ( m + 1 ) ) |
| 168 |
5
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 169 |
|
simpr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) |
| 170 |
|
isorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( m e. ( 1 ... ( # ` A ) ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) ) -> ( m < ( m + 1 ) <-> ( G ` m ) < ( G ` ( m + 1 ) ) ) ) |
| 171 |
168 156 169 170
|
syl12anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( m < ( m + 1 ) <-> ( G ` m ) < ( G ` ( m + 1 ) ) ) ) |
| 172 |
167 171
|
mpbid |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) < ( G ` ( m + 1 ) ) ) |
| 173 |
|
eluzelz |
|- ( ( G ` m ) e. ( ZZ>= ` M ) -> ( G ` m ) e. ZZ ) |
| 174 |
164 173
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) e. ZZ ) |
| 175 |
162 169
|
ffvelcdmd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. A ) |
| 176 |
161 175
|
sseldd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. ( ZZ>= ` M ) ) |
| 177 |
|
eluzelz |
|- ( ( G ` ( m + 1 ) ) e. ( ZZ>= ` M ) -> ( G ` ( m + 1 ) ) e. ZZ ) |
| 178 |
176 177
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. ZZ ) |
| 179 |
|
zltlem1 |
|- ( ( ( G ` m ) e. ZZ /\ ( G ` ( m + 1 ) ) e. ZZ ) -> ( ( G ` m ) < ( G ` ( m + 1 ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 180 |
174 178 179
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` m ) < ( G ` ( m + 1 ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 181 |
172 180
|
mpbid |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) |
| 182 |
|
peano2zm |
|- ( ( G ` ( m + 1 ) ) e. ZZ -> ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ ) |
| 183 |
178 182
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ ) |
| 184 |
|
eluz |
|- ( ( ( G ` m ) e. ZZ /\ ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 185 |
174 183 184
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 186 |
181 185
|
mpbird |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) ) |
| 187 |
183
|
zred |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. RR ) |
| 188 |
178
|
zred |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. RR ) |
| 189 |
83
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. RR ) |
| 190 |
188
|
lem1d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( m + 1 ) ) ) |
| 191 |
|
elfzle2 |
|- ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( m + 1 ) <_ ( # ` A ) ) |
| 192 |
191
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( m + 1 ) <_ ( # ` A ) ) |
| 193 |
54
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( 1 ... ( # ` A ) ) C_ RR* ) |
| 194 |
58
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> A C_ RR* ) |
| 195 |
60
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
| 196 |
|
leisorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( 1 ... ( # ` A ) ) C_ RR* /\ A C_ RR* ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ ( # ` A ) e. ( 1 ... ( # ` A ) ) ) ) -> ( ( m + 1 ) <_ ( # ` A ) <-> ( G ` ( m + 1 ) ) <_ ( G ` ( # ` A ) ) ) ) |
| 197 |
168 193 194 169 195 196
|
syl122anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( m + 1 ) <_ ( # ` A ) <-> ( G ` ( m + 1 ) ) <_ ( G ` ( # ` A ) ) ) ) |
| 198 |
192 197
|
mpbid |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) <_ ( G ` ( # ` A ) ) ) |
| 199 |
187 188 189 190 198
|
letrd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( # ` A ) ) ) |
| 200 |
67
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. ZZ ) |
| 201 |
|
eluz |
|- ( ( ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ /\ ( G ` ( # ` A ) ) e. ZZ ) -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) <-> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 202 |
183 200 201
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) <-> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 203 |
199 202
|
mpbird |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 204 |
|
uztrn |
|- ( ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) /\ ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( G ` m ) ) ) |
| 205 |
203 186 204
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( G ` m ) ) ) |
| 206 |
|
fzss2 |
|- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( G ` m ) ) -> ( M ... ( G ` m ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
| 207 |
205 206
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( M ... ( G ` m ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
| 208 |
207
|
sselda |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( M ... ( G ` m ) ) ) -> k e. ( M ... ( G ` ( # ` A ) ) ) ) |
| 209 |
8
|
ad4ant14 |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( M ... ( G ` ( # ` A ) ) ) ) -> ( F ` k ) e. S ) |
| 210 |
208 209
|
syldan |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( M ... ( G ` m ) ) ) -> ( F ` k ) e. S ) |
| 211 |
3
|
ad4ant14 |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ ( k e. S /\ n e. S ) ) -> ( k .+ n ) e. S ) |
| 212 |
164 210 211
|
seqcl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) e. S ) |
| 213 |
|
simplll |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> ph ) |
| 214 |
|
elfzuz |
|- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> k e. ( ZZ>= ` ( ( G ` m ) + 1 ) ) ) |
| 215 |
|
peano2uz |
|- ( ( G ` m ) e. ( ZZ>= ` M ) -> ( ( G ` m ) + 1 ) e. ( ZZ>= ` M ) ) |
| 216 |
164 215
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` m ) + 1 ) e. ( ZZ>= ` M ) ) |
| 217 |
|
uztrn |
|- ( ( k e. ( ZZ>= ` ( ( G ` m ) + 1 ) ) /\ ( ( G ` m ) + 1 ) e. ( ZZ>= ` M ) ) -> k e. ( ZZ>= ` M ) ) |
| 218 |
214 216 217
|
syl2anr |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> k e. ( ZZ>= ` M ) ) |
| 219 |
|
elfzuz3 |
|- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` k ) ) |
| 220 |
|
uztrn |
|- ( ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) /\ ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` k ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` k ) ) |
| 221 |
203 219 220
|
syl2an |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` k ) ) |
| 222 |
|
elfzuzb |
|- ( k e. ( M ... ( G ` ( # ` A ) ) ) <-> ( k e. ( ZZ>= ` M ) /\ ( G ` ( # ` A ) ) e. ( ZZ>= ` k ) ) ) |
| 223 |
218 221 222
|
sylanbrc |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> k e. ( M ... ( G ` ( # ` A ) ) ) ) |
| 224 |
149
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> m e. ZZ ) |
| 225 |
102
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
| 226 |
|
simprr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> k e. A ) |
| 227 |
225 226
|
ffvelcdmd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) |
| 228 |
227
|
elfzelzd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( `' G ` k ) e. ZZ ) |
| 229 |
|
btwnnz |
|- ( ( m e. ZZ /\ m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) -> -. ( `' G ` k ) e. ZZ ) |
| 230 |
229
|
3expib |
|- ( m e. ZZ -> ( ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) -> -. ( `' G ` k ) e. ZZ ) ) |
| 231 |
230
|
con2d |
|- ( m e. ZZ -> ( ( `' G ` k ) e. ZZ -> -. ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) ) ) |
| 232 |
224 228 231
|
sylc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> -. ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) ) |
| 233 |
5
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 234 |
156
|
adantrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> m e. ( 1 ... ( # ` A ) ) ) |
| 235 |
|
isorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( m e. ( 1 ... ( # ` A ) ) /\ ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) ) -> ( m < ( `' G ` k ) <-> ( G ` m ) < ( G ` ( `' G ` k ) ) ) ) |
| 236 |
233 234 227 235
|
syl12anc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( m < ( `' G ` k ) <-> ( G ` m ) < ( G ` ( `' G ` k ) ) ) ) |
| 237 |
38
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 238 |
237 226 114
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( G ` ( `' G ` k ) ) = k ) |
| 239 |
238
|
breq2d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( G ` m ) < ( G ` ( `' G ` k ) ) <-> ( G ` m ) < k ) ) |
| 240 |
174
|
adantrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( G ` m ) e. ZZ ) |
| 241 |
7
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> A C_ ( ZZ>= ` M ) ) |
| 242 |
241 226
|
sseldd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> k e. ( ZZ>= ` M ) ) |
| 243 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
| 244 |
242 243
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> k e. ZZ ) |
| 245 |
|
zltp1le |
|- ( ( ( G ` m ) e. ZZ /\ k e. ZZ ) -> ( ( G ` m ) < k <-> ( ( G ` m ) + 1 ) <_ k ) ) |
| 246 |
240 244 245
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( G ` m ) < k <-> ( ( G ` m ) + 1 ) <_ k ) ) |
| 247 |
236 239 246
|
3bitrd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( m < ( `' G ` k ) <-> ( ( G ` m ) + 1 ) <_ k ) ) |
| 248 |
169
|
adantrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) |
| 249 |
|
isorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( `' G ` k ) e. ( 1 ... ( # ` A ) ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) ) -> ( ( `' G ` k ) < ( m + 1 ) <-> ( G ` ( `' G ` k ) ) < ( G ` ( m + 1 ) ) ) ) |
| 250 |
233 227 248 249
|
syl12anc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( `' G ` k ) < ( m + 1 ) <-> ( G ` ( `' G ` k ) ) < ( G ` ( m + 1 ) ) ) ) |
| 251 |
238
|
breq1d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( G ` ( `' G ` k ) ) < ( G ` ( m + 1 ) ) <-> k < ( G ` ( m + 1 ) ) ) ) |
| 252 |
178
|
adantrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( G ` ( m + 1 ) ) e. ZZ ) |
| 253 |
|
zltlem1 |
|- ( ( k e. ZZ /\ ( G ` ( m + 1 ) ) e. ZZ ) -> ( k < ( G ` ( m + 1 ) ) <-> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 254 |
244 252 253
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( k < ( G ` ( m + 1 ) ) <-> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 255 |
250 251 254
|
3bitrd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( `' G ` k ) < ( m + 1 ) <-> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 256 |
247 255
|
anbi12d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) <-> ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) ) |
| 257 |
232 256
|
mtbid |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> -. ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 258 |
257
|
expr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( k e. A -> -. ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) ) |
| 259 |
258
|
con2d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) -> -. k e. A ) ) |
| 260 |
|
elfzle1 |
|- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> ( ( G ` m ) + 1 ) <_ k ) |
| 261 |
|
elfzle2 |
|- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) |
| 262 |
260 261
|
jca |
|- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 263 |
259 262
|
impel |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> -. k e. A ) |
| 264 |
223 263
|
eldifd |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) |
| 265 |
213 264 9
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> ( F ` k ) = Z ) |
| 266 |
160 164 186 212 265
|
seqid2 |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 267 |
266
|
oveq1d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) = ( ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
| 268 |
|
fveq2 |
|- ( n = ( m + 1 ) -> ( H ` n ) = ( H ` ( m + 1 ) ) ) |
| 269 |
|
2fveq3 |
|- ( n = ( m + 1 ) -> ( F ` ( G ` n ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) |
| 270 |
268 269
|
eqeq12d |
|- ( n = ( m + 1 ) -> ( ( H ` n ) = ( F ` ( G ` n ) ) <-> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) ) |
| 271 |
270
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( ph -> ( H ` n ) = ( F ` ( G ` n ) ) ) <-> ( ph -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) ) ) |
| 272 |
271 136
|
vtoclga |
|- ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( ph -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) ) |
| 273 |
272
|
impcom |
|- ( ( ph /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) |
| 274 |
273
|
adantlr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) |
| 275 |
274
|
oveq2d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
| 276 |
93
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> M e. ZZ ) |
| 277 |
178
|
zcnd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. CC ) |
| 278 |
|
ax-1cn |
|- 1 e. CC |
| 279 |
|
npcan |
|- ( ( ( G ` ( m + 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) = ( G ` ( m + 1 ) ) ) |
| 280 |
277 278 279
|
sylancl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) = ( G ` ( m + 1 ) ) ) |
| 281 |
|
uztrn |
|- ( ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) /\ ( G ` m ) e. ( ZZ>= ` M ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` M ) ) |
| 282 |
186 164 281
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` M ) ) |
| 283 |
|
eluzp1p1 |
|- ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` M ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 284 |
282 283
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 285 |
280 284
|
eqeltrrd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 286 |
|
seqm1 |
|- ( ( M e. ZZ /\ ( G ` ( m + 1 ) ) e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
| 287 |
276 285 286
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
| 288 |
267 275 287
|
3eqtr4rd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) ) |
| 289 |
|
seqp1 |
|- ( m e. ( ZZ>= ` 1 ) -> ( seq 1 ( .+ , H ) ` ( m + 1 ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) |
| 290 |
148 289
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq 1 ( .+ , H ) ` ( m + 1 ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) |
| 291 |
288 290
|
eqeq12d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) <-> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) ) |
| 292 |
159 291
|
imbitrrid |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) |
| 293 |
292
|
ex |
|- ( ( ph /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
| 294 |
293
|
a2d |
|- ( ( ph /\ m e. NN ) -> ( ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
| 295 |
158 294
|
syld |
|- ( ( ph /\ m e. NN ) -> ( ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
| 296 |
295
|
expcom |
|- ( m e. NN -> ( ph -> ( ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) ) |
| 297 |
296
|
a2d |
|- ( m e. NN -> ( ( ph -> ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) -> ( ph -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) ) |
| 298 |
18 24 30 36 145 297
|
nnind |
|- ( N e. NN -> ( ph -> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) ) |
| 299 |
12 298
|
mpcom |
|- ( ph -> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) |
| 300 |
6 299
|
mpd |
|- ( ph -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) |