Step |
Hyp |
Ref |
Expression |
1 |
|
seqcoll.1 |
|- ( ( ph /\ k e. S ) -> ( Z .+ k ) = k ) |
2 |
|
seqcoll.1b |
|- ( ( ph /\ k e. S ) -> ( k .+ Z ) = k ) |
3 |
|
seqcoll.c |
|- ( ( ph /\ ( k e. S /\ n e. S ) ) -> ( k .+ n ) e. S ) |
4 |
|
seqcoll.a |
|- ( ph -> Z e. S ) |
5 |
|
seqcoll.2 |
|- ( ph -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
6 |
|
seqcoll.3 |
|- ( ph -> N e. ( 1 ... ( # ` A ) ) ) |
7 |
|
seqcoll.4 |
|- ( ph -> A C_ ( ZZ>= ` M ) ) |
8 |
|
seqcoll.5 |
|- ( ( ph /\ k e. ( M ... ( G ` ( # ` A ) ) ) ) -> ( F ` k ) e. S ) |
9 |
|
seqcoll.6 |
|- ( ( ph /\ k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) -> ( F ` k ) = Z ) |
10 |
|
seqcoll.7 |
|- ( ( ph /\ n e. ( 1 ... ( # ` A ) ) ) -> ( H ` n ) = ( F ` ( G ` n ) ) ) |
11 |
|
elfznn |
|- ( N e. ( 1 ... ( # ` A ) ) -> N e. NN ) |
12 |
6 11
|
syl |
|- ( ph -> N e. NN ) |
13 |
|
eleq1 |
|- ( y = 1 -> ( y e. ( 1 ... ( # ` A ) ) <-> 1 e. ( 1 ... ( # ` A ) ) ) ) |
14 |
|
2fveq3 |
|- ( y = 1 -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` 1 ) ) ) |
15 |
|
fveq2 |
|- ( y = 1 -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` 1 ) ) |
16 |
14 15
|
eqeq12d |
|- ( y = 1 -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) |
17 |
13 16
|
imbi12d |
|- ( y = 1 -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( 1 e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) ) |
18 |
17
|
imbi2d |
|- ( y = 1 -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( 1 e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) ) ) |
19 |
|
eleq1 |
|- ( y = m -> ( y e. ( 1 ... ( # ` A ) ) <-> m e. ( 1 ... ( # ` A ) ) ) ) |
20 |
|
2fveq3 |
|- ( y = m -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` m ) ) ) |
21 |
|
fveq2 |
|- ( y = m -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` m ) ) |
22 |
20 21
|
eqeq12d |
|- ( y = m -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) |
23 |
19 22
|
imbi12d |
|- ( y = m -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) ) |
24 |
23
|
imbi2d |
|- ( y = m -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) ) ) |
25 |
|
eleq1 |
|- ( y = ( m + 1 ) -> ( y e. ( 1 ... ( # ` A ) ) <-> ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) ) |
26 |
|
2fveq3 |
|- ( y = ( m + 1 ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) ) |
27 |
|
fveq2 |
|- ( y = ( m + 1 ) -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) |
28 |
26 27
|
eqeq12d |
|- ( y = ( m + 1 ) -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) |
29 |
25 28
|
imbi12d |
|- ( y = ( m + 1 ) -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
30 |
29
|
imbi2d |
|- ( y = ( m + 1 ) -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) ) |
31 |
|
eleq1 |
|- ( y = N -> ( y e. ( 1 ... ( # ` A ) ) <-> N e. ( 1 ... ( # ` A ) ) ) ) |
32 |
|
2fveq3 |
|- ( y = N -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` N ) ) ) |
33 |
|
fveq2 |
|- ( y = N -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` N ) ) |
34 |
32 33
|
eqeq12d |
|- ( y = N -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) |
35 |
31 34
|
imbi12d |
|- ( y = N -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) ) |
36 |
35
|
imbi2d |
|- ( y = N -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) ) ) |
37 |
|
isof1o |
|- ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
38 |
5 37
|
syl |
|- ( ph -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
39 |
|
f1of |
|- ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> G : ( 1 ... ( # ` A ) ) --> A ) |
40 |
38 39
|
syl |
|- ( ph -> G : ( 1 ... ( # ` A ) ) --> A ) |
41 |
|
elfzuz2 |
|- ( N e. ( 1 ... ( # ` A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
42 |
6 41
|
syl |
|- ( ph -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
43 |
|
eluzfz1 |
|- ( ( # ` A ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( # ` A ) ) ) |
44 |
42 43
|
syl |
|- ( ph -> 1 e. ( 1 ... ( # ` A ) ) ) |
45 |
40 44
|
ffvelrnd |
|- ( ph -> ( G ` 1 ) e. A ) |
46 |
7 45
|
sseldd |
|- ( ph -> ( G ` 1 ) e. ( ZZ>= ` M ) ) |
47 |
|
eluzle |
|- ( ( # ` A ) e. ( ZZ>= ` 1 ) -> 1 <_ ( # ` A ) ) |
48 |
42 47
|
syl |
|- ( ph -> 1 <_ ( # ` A ) ) |
49 |
|
fzssz |
|- ( 1 ... ( # ` A ) ) C_ ZZ |
50 |
|
zssre |
|- ZZ C_ RR |
51 |
49 50
|
sstri |
|- ( 1 ... ( # ` A ) ) C_ RR |
52 |
51
|
a1i |
|- ( ph -> ( 1 ... ( # ` A ) ) C_ RR ) |
53 |
|
ressxr |
|- RR C_ RR* |
54 |
52 53
|
sstrdi |
|- ( ph -> ( 1 ... ( # ` A ) ) C_ RR* ) |
55 |
|
eluzelre |
|- ( k e. ( ZZ>= ` M ) -> k e. RR ) |
56 |
55
|
ssriv |
|- ( ZZ>= ` M ) C_ RR |
57 |
7 56
|
sstrdi |
|- ( ph -> A C_ RR ) |
58 |
57 53
|
sstrdi |
|- ( ph -> A C_ RR* ) |
59 |
|
eluzfz2 |
|- ( ( # ` A ) e. ( ZZ>= ` 1 ) -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
60 |
42 59
|
syl |
|- ( ph -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
61 |
|
leisorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( 1 ... ( # ` A ) ) C_ RR* /\ A C_ RR* ) /\ ( 1 e. ( 1 ... ( # ` A ) ) /\ ( # ` A ) e. ( 1 ... ( # ` A ) ) ) ) -> ( 1 <_ ( # ` A ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
62 |
5 54 58 44 60 61
|
syl122anc |
|- ( ph -> ( 1 <_ ( # ` A ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
63 |
48 62
|
mpbid |
|- ( ph -> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) |
64 |
40 60
|
ffvelrnd |
|- ( ph -> ( G ` ( # ` A ) ) e. A ) |
65 |
7 64
|
sseldd |
|- ( ph -> ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) ) |
66 |
|
eluzelz |
|- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) -> ( G ` ( # ` A ) ) e. ZZ ) |
67 |
65 66
|
syl |
|- ( ph -> ( G ` ( # ` A ) ) e. ZZ ) |
68 |
|
elfz5 |
|- ( ( ( G ` 1 ) e. ( ZZ>= ` M ) /\ ( G ` ( # ` A ) ) e. ZZ ) -> ( ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
69 |
46 67 68
|
syl2anc |
|- ( ph -> ( ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
70 |
63 69
|
mpbird |
|- ( ph -> ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) ) |
71 |
|
fveq2 |
|- ( k = ( G ` 1 ) -> ( F ` k ) = ( F ` ( G ` 1 ) ) ) |
72 |
71
|
eleq1d |
|- ( k = ( G ` 1 ) -> ( ( F ` k ) e. S <-> ( F ` ( G ` 1 ) ) e. S ) ) |
73 |
72
|
imbi2d |
|- ( k = ( G ` 1 ) -> ( ( ph -> ( F ` k ) e. S ) <-> ( ph -> ( F ` ( G ` 1 ) ) e. S ) ) ) |
74 |
8
|
expcom |
|- ( k e. ( M ... ( G ` ( # ` A ) ) ) -> ( ph -> ( F ` k ) e. S ) ) |
75 |
73 74
|
vtoclga |
|- ( ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) -> ( ph -> ( F ` ( G ` 1 ) ) e. S ) ) |
76 |
70 75
|
mpcom |
|- ( ph -> ( F ` ( G ` 1 ) ) e. S ) |
77 |
|
eluzelz |
|- ( ( G ` 1 ) e. ( ZZ>= ` M ) -> ( G ` 1 ) e. ZZ ) |
78 |
46 77
|
syl |
|- ( ph -> ( G ` 1 ) e. ZZ ) |
79 |
|
peano2zm |
|- ( ( G ` 1 ) e. ZZ -> ( ( G ` 1 ) - 1 ) e. ZZ ) |
80 |
78 79
|
syl |
|- ( ph -> ( ( G ` 1 ) - 1 ) e. ZZ ) |
81 |
80
|
zred |
|- ( ph -> ( ( G ` 1 ) - 1 ) e. RR ) |
82 |
78
|
zred |
|- ( ph -> ( G ` 1 ) e. RR ) |
83 |
67
|
zred |
|- ( ph -> ( G ` ( # ` A ) ) e. RR ) |
84 |
82
|
lem1d |
|- ( ph -> ( ( G ` 1 ) - 1 ) <_ ( G ` 1 ) ) |
85 |
81 82 83 84 63
|
letrd |
|- ( ph -> ( ( G ` 1 ) - 1 ) <_ ( G ` ( # ` A ) ) ) |
86 |
|
eluz |
|- ( ( ( ( G ` 1 ) - 1 ) e. ZZ /\ ( G ` ( # ` A ) ) e. ZZ ) -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) <-> ( ( G ` 1 ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
87 |
80 67 86
|
syl2anc |
|- ( ph -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) <-> ( ( G ` 1 ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
88 |
85 87
|
mpbird |
|- ( ph -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) ) |
89 |
|
fzss2 |
|- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) -> ( M ... ( ( G ` 1 ) - 1 ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
90 |
88 89
|
syl |
|- ( ph -> ( M ... ( ( G ` 1 ) - 1 ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
91 |
90
|
sselda |
|- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> k e. ( M ... ( G ` ( # ` A ) ) ) ) |
92 |
|
eluzel2 |
|- ( ( G ` 1 ) e. ( ZZ>= ` M ) -> M e. ZZ ) |
93 |
46 92
|
syl |
|- ( ph -> M e. ZZ ) |
94 |
|
elfzm11 |
|- ( ( M e. ZZ /\ ( G ` 1 ) e. ZZ ) -> ( k e. ( M ... ( ( G ` 1 ) - 1 ) ) <-> ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) ) ) |
95 |
93 78 94
|
syl2anc |
|- ( ph -> ( k e. ( M ... ( ( G ` 1 ) - 1 ) ) <-> ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) ) ) |
96 |
|
simp3 |
|- ( ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) -> k < ( G ` 1 ) ) |
97 |
82
|
adantr |
|- ( ( ph /\ k e. A ) -> ( G ` 1 ) e. RR ) |
98 |
57
|
sselda |
|- ( ( ph /\ k e. A ) -> k e. RR ) |
99 |
|
f1ocnv |
|- ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) ) |
100 |
38 99
|
syl |
|- ( ph -> `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) ) |
101 |
|
f1of |
|- ( `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
102 |
100 101
|
syl |
|- ( ph -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
103 |
102
|
ffvelrnda |
|- ( ( ph /\ k e. A ) -> ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) |
104 |
|
elfznn |
|- ( ( `' G ` k ) e. ( 1 ... ( # ` A ) ) -> ( `' G ` k ) e. NN ) |
105 |
103 104
|
syl |
|- ( ( ph /\ k e. A ) -> ( `' G ` k ) e. NN ) |
106 |
105
|
nnge1d |
|- ( ( ph /\ k e. A ) -> 1 <_ ( `' G ` k ) ) |
107 |
5
|
adantr |
|- ( ( ph /\ k e. A ) -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
108 |
54
|
adantr |
|- ( ( ph /\ k e. A ) -> ( 1 ... ( # ` A ) ) C_ RR* ) |
109 |
58
|
adantr |
|- ( ( ph /\ k e. A ) -> A C_ RR* ) |
110 |
44
|
adantr |
|- ( ( ph /\ k e. A ) -> 1 e. ( 1 ... ( # ` A ) ) ) |
111 |
|
leisorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( 1 ... ( # ` A ) ) C_ RR* /\ A C_ RR* ) /\ ( 1 e. ( 1 ... ( # ` A ) ) /\ ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) ) -> ( 1 <_ ( `' G ` k ) <-> ( G ` 1 ) <_ ( G ` ( `' G ` k ) ) ) ) |
112 |
107 108 109 110 103 111
|
syl122anc |
|- ( ( ph /\ k e. A ) -> ( 1 <_ ( `' G ` k ) <-> ( G ` 1 ) <_ ( G ` ( `' G ` k ) ) ) ) |
113 |
106 112
|
mpbid |
|- ( ( ph /\ k e. A ) -> ( G ` 1 ) <_ ( G ` ( `' G ` k ) ) ) |
114 |
|
f1ocnvfv2 |
|- ( ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ k e. A ) -> ( G ` ( `' G ` k ) ) = k ) |
115 |
38 114
|
sylan |
|- ( ( ph /\ k e. A ) -> ( G ` ( `' G ` k ) ) = k ) |
116 |
113 115
|
breqtrd |
|- ( ( ph /\ k e. A ) -> ( G ` 1 ) <_ k ) |
117 |
97 98 116
|
lensymd |
|- ( ( ph /\ k e. A ) -> -. k < ( G ` 1 ) ) |
118 |
117
|
ex |
|- ( ph -> ( k e. A -> -. k < ( G ` 1 ) ) ) |
119 |
118
|
con2d |
|- ( ph -> ( k < ( G ` 1 ) -> -. k e. A ) ) |
120 |
96 119
|
syl5 |
|- ( ph -> ( ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) -> -. k e. A ) ) |
121 |
95 120
|
sylbid |
|- ( ph -> ( k e. ( M ... ( ( G ` 1 ) - 1 ) ) -> -. k e. A ) ) |
122 |
121
|
imp |
|- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> -. k e. A ) |
123 |
91 122
|
eldifd |
|- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) |
124 |
123 9
|
syldan |
|- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> ( F ` k ) = Z ) |
125 |
1 4 46 76 124
|
seqid |
|- ( ph -> ( seq M ( .+ , F ) |` ( ZZ>= ` ( G ` 1 ) ) ) = seq ( G ` 1 ) ( .+ , F ) ) |
126 |
125
|
fveq1d |
|- ( ph -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` ( G ` 1 ) ) ) ` ( G ` 1 ) ) = ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) ) |
127 |
|
uzid |
|- ( ( G ` 1 ) e. ZZ -> ( G ` 1 ) e. ( ZZ>= ` ( G ` 1 ) ) ) |
128 |
78 127
|
syl |
|- ( ph -> ( G ` 1 ) e. ( ZZ>= ` ( G ` 1 ) ) ) |
129 |
128
|
fvresd |
|- ( ph -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` ( G ` 1 ) ) ) ` ( G ` 1 ) ) = ( seq M ( .+ , F ) ` ( G ` 1 ) ) ) |
130 |
|
seq1 |
|- ( ( G ` 1 ) e. ZZ -> ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) = ( F ` ( G ` 1 ) ) ) |
131 |
78 130
|
syl |
|- ( ph -> ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) = ( F ` ( G ` 1 ) ) ) |
132 |
|
fveq2 |
|- ( n = 1 -> ( H ` n ) = ( H ` 1 ) ) |
133 |
|
2fveq3 |
|- ( n = 1 -> ( F ` ( G ` n ) ) = ( F ` ( G ` 1 ) ) ) |
134 |
132 133
|
eqeq12d |
|- ( n = 1 -> ( ( H ` n ) = ( F ` ( G ` n ) ) <-> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) ) |
135 |
134
|
imbi2d |
|- ( n = 1 -> ( ( ph -> ( H ` n ) = ( F ` ( G ` n ) ) ) <-> ( ph -> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) ) ) |
136 |
10
|
expcom |
|- ( n e. ( 1 ... ( # ` A ) ) -> ( ph -> ( H ` n ) = ( F ` ( G ` n ) ) ) ) |
137 |
135 136
|
vtoclga |
|- ( 1 e. ( 1 ... ( # ` A ) ) -> ( ph -> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) ) |
138 |
44 137
|
mpcom |
|- ( ph -> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) |
139 |
131 138
|
eqtr4d |
|- ( ph -> ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) = ( H ` 1 ) ) |
140 |
126 129 139
|
3eqtr3d |
|- ( ph -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( H ` 1 ) ) |
141 |
|
1z |
|- 1 e. ZZ |
142 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( .+ , H ) ` 1 ) = ( H ` 1 ) ) |
143 |
141 142
|
ax-mp |
|- ( seq 1 ( .+ , H ) ` 1 ) = ( H ` 1 ) |
144 |
140 143
|
eqtr4di |
|- ( ph -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) |
145 |
144
|
a1d |
|- ( ph -> ( 1 e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) |
146 |
|
simplr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. NN ) |
147 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
148 |
146 147
|
eleqtrdi |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. ( ZZ>= ` 1 ) ) |
149 |
|
nnz |
|- ( m e. NN -> m e. ZZ ) |
150 |
149
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. ZZ ) |
151 |
|
elfzuz3 |
|- ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( # ` A ) e. ( ZZ>= ` ( m + 1 ) ) ) |
152 |
151
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( # ` A ) e. ( ZZ>= ` ( m + 1 ) ) ) |
153 |
|
peano2uzr |
|- ( ( m e. ZZ /\ ( # ` A ) e. ( ZZ>= ` ( m + 1 ) ) ) -> ( # ` A ) e. ( ZZ>= ` m ) ) |
154 |
150 152 153
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( # ` A ) e. ( ZZ>= ` m ) ) |
155 |
|
elfzuzb |
|- ( m e. ( 1 ... ( # ` A ) ) <-> ( m e. ( ZZ>= ` 1 ) /\ ( # ` A ) e. ( ZZ>= ` m ) ) ) |
156 |
148 154 155
|
sylanbrc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. ( 1 ... ( # ` A ) ) ) |
157 |
156
|
ex |
|- ( ( ph /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> m e. ( 1 ... ( # ` A ) ) ) ) |
158 |
157
|
imim1d |
|- ( ( ph /\ m e. NN ) -> ( ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) ) |
159 |
|
oveq1 |
|- ( ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) |
160 |
2
|
ad4ant14 |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. S ) -> ( k .+ Z ) = k ) |
161 |
7
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> A C_ ( ZZ>= ` M ) ) |
162 |
40
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> G : ( 1 ... ( # ` A ) ) --> A ) |
163 |
162 156
|
ffvelrnd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) e. A ) |
164 |
161 163
|
sseldd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) e. ( ZZ>= ` M ) ) |
165 |
|
nnre |
|- ( m e. NN -> m e. RR ) |
166 |
165
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. RR ) |
167 |
166
|
ltp1d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m < ( m + 1 ) ) |
168 |
5
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
169 |
|
simpr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) |
170 |
|
isorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( m e. ( 1 ... ( # ` A ) ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) ) -> ( m < ( m + 1 ) <-> ( G ` m ) < ( G ` ( m + 1 ) ) ) ) |
171 |
168 156 169 170
|
syl12anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( m < ( m + 1 ) <-> ( G ` m ) < ( G ` ( m + 1 ) ) ) ) |
172 |
167 171
|
mpbid |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) < ( G ` ( m + 1 ) ) ) |
173 |
|
eluzelz |
|- ( ( G ` m ) e. ( ZZ>= ` M ) -> ( G ` m ) e. ZZ ) |
174 |
164 173
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) e. ZZ ) |
175 |
162 169
|
ffvelrnd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. A ) |
176 |
161 175
|
sseldd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. ( ZZ>= ` M ) ) |
177 |
|
eluzelz |
|- ( ( G ` ( m + 1 ) ) e. ( ZZ>= ` M ) -> ( G ` ( m + 1 ) ) e. ZZ ) |
178 |
176 177
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. ZZ ) |
179 |
|
zltlem1 |
|- ( ( ( G ` m ) e. ZZ /\ ( G ` ( m + 1 ) ) e. ZZ ) -> ( ( G ` m ) < ( G ` ( m + 1 ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
180 |
174 178 179
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` m ) < ( G ` ( m + 1 ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
181 |
172 180
|
mpbid |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) |
182 |
|
peano2zm |
|- ( ( G ` ( m + 1 ) ) e. ZZ -> ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ ) |
183 |
178 182
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ ) |
184 |
|
eluz |
|- ( ( ( G ` m ) e. ZZ /\ ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
185 |
174 183 184
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
186 |
181 185
|
mpbird |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) ) |
187 |
183
|
zred |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. RR ) |
188 |
178
|
zred |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. RR ) |
189 |
83
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. RR ) |
190 |
188
|
lem1d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( m + 1 ) ) ) |
191 |
|
elfzle2 |
|- ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( m + 1 ) <_ ( # ` A ) ) |
192 |
191
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( m + 1 ) <_ ( # ` A ) ) |
193 |
54
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( 1 ... ( # ` A ) ) C_ RR* ) |
194 |
58
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> A C_ RR* ) |
195 |
60
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
196 |
|
leisorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( 1 ... ( # ` A ) ) C_ RR* /\ A C_ RR* ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ ( # ` A ) e. ( 1 ... ( # ` A ) ) ) ) -> ( ( m + 1 ) <_ ( # ` A ) <-> ( G ` ( m + 1 ) ) <_ ( G ` ( # ` A ) ) ) ) |
197 |
168 193 194 169 195 196
|
syl122anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( m + 1 ) <_ ( # ` A ) <-> ( G ` ( m + 1 ) ) <_ ( G ` ( # ` A ) ) ) ) |
198 |
192 197
|
mpbid |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) <_ ( G ` ( # ` A ) ) ) |
199 |
187 188 189 190 198
|
letrd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( # ` A ) ) ) |
200 |
67
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. ZZ ) |
201 |
|
eluz |
|- ( ( ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ /\ ( G ` ( # ` A ) ) e. ZZ ) -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) <-> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
202 |
183 200 201
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) <-> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
203 |
199 202
|
mpbird |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
204 |
|
uztrn |
|- ( ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) /\ ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( G ` m ) ) ) |
205 |
203 186 204
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( G ` m ) ) ) |
206 |
|
fzss2 |
|- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( G ` m ) ) -> ( M ... ( G ` m ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
207 |
205 206
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( M ... ( G ` m ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
208 |
207
|
sselda |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( M ... ( G ` m ) ) ) -> k e. ( M ... ( G ` ( # ` A ) ) ) ) |
209 |
8
|
ad4ant14 |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( M ... ( G ` ( # ` A ) ) ) ) -> ( F ` k ) e. S ) |
210 |
208 209
|
syldan |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( M ... ( G ` m ) ) ) -> ( F ` k ) e. S ) |
211 |
3
|
ad4ant14 |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ ( k e. S /\ n e. S ) ) -> ( k .+ n ) e. S ) |
212 |
164 210 211
|
seqcl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) e. S ) |
213 |
|
simplll |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> ph ) |
214 |
|
elfzuz |
|- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> k e. ( ZZ>= ` ( ( G ` m ) + 1 ) ) ) |
215 |
|
peano2uz |
|- ( ( G ` m ) e. ( ZZ>= ` M ) -> ( ( G ` m ) + 1 ) e. ( ZZ>= ` M ) ) |
216 |
164 215
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` m ) + 1 ) e. ( ZZ>= ` M ) ) |
217 |
|
uztrn |
|- ( ( k e. ( ZZ>= ` ( ( G ` m ) + 1 ) ) /\ ( ( G ` m ) + 1 ) e. ( ZZ>= ` M ) ) -> k e. ( ZZ>= ` M ) ) |
218 |
214 216 217
|
syl2anr |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> k e. ( ZZ>= ` M ) ) |
219 |
|
elfzuz3 |
|- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` k ) ) |
220 |
|
uztrn |
|- ( ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) /\ ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` k ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` k ) ) |
221 |
203 219 220
|
syl2an |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` k ) ) |
222 |
|
elfzuzb |
|- ( k e. ( M ... ( G ` ( # ` A ) ) ) <-> ( k e. ( ZZ>= ` M ) /\ ( G ` ( # ` A ) ) e. ( ZZ>= ` k ) ) ) |
223 |
218 221 222
|
sylanbrc |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> k e. ( M ... ( G ` ( # ` A ) ) ) ) |
224 |
149
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> m e. ZZ ) |
225 |
102
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
226 |
|
simprr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> k e. A ) |
227 |
225 226
|
ffvelrnd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) |
228 |
227
|
elfzelzd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( `' G ` k ) e. ZZ ) |
229 |
|
btwnnz |
|- ( ( m e. ZZ /\ m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) -> -. ( `' G ` k ) e. ZZ ) |
230 |
229
|
3expib |
|- ( m e. ZZ -> ( ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) -> -. ( `' G ` k ) e. ZZ ) ) |
231 |
230
|
con2d |
|- ( m e. ZZ -> ( ( `' G ` k ) e. ZZ -> -. ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) ) ) |
232 |
224 228 231
|
sylc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> -. ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) ) |
233 |
5
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
234 |
156
|
adantrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> m e. ( 1 ... ( # ` A ) ) ) |
235 |
|
isorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( m e. ( 1 ... ( # ` A ) ) /\ ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) ) -> ( m < ( `' G ` k ) <-> ( G ` m ) < ( G ` ( `' G ` k ) ) ) ) |
236 |
233 234 227 235
|
syl12anc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( m < ( `' G ` k ) <-> ( G ` m ) < ( G ` ( `' G ` k ) ) ) ) |
237 |
38
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
238 |
237 226 114
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( G ` ( `' G ` k ) ) = k ) |
239 |
238
|
breq2d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( G ` m ) < ( G ` ( `' G ` k ) ) <-> ( G ` m ) < k ) ) |
240 |
174
|
adantrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( G ` m ) e. ZZ ) |
241 |
7
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> A C_ ( ZZ>= ` M ) ) |
242 |
241 226
|
sseldd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> k e. ( ZZ>= ` M ) ) |
243 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
244 |
242 243
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> k e. ZZ ) |
245 |
|
zltp1le |
|- ( ( ( G ` m ) e. ZZ /\ k e. ZZ ) -> ( ( G ` m ) < k <-> ( ( G ` m ) + 1 ) <_ k ) ) |
246 |
240 244 245
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( G ` m ) < k <-> ( ( G ` m ) + 1 ) <_ k ) ) |
247 |
236 239 246
|
3bitrd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( m < ( `' G ` k ) <-> ( ( G ` m ) + 1 ) <_ k ) ) |
248 |
169
|
adantrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) |
249 |
|
isorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( `' G ` k ) e. ( 1 ... ( # ` A ) ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) ) -> ( ( `' G ` k ) < ( m + 1 ) <-> ( G ` ( `' G ` k ) ) < ( G ` ( m + 1 ) ) ) ) |
250 |
233 227 248 249
|
syl12anc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( `' G ` k ) < ( m + 1 ) <-> ( G ` ( `' G ` k ) ) < ( G ` ( m + 1 ) ) ) ) |
251 |
238
|
breq1d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( G ` ( `' G ` k ) ) < ( G ` ( m + 1 ) ) <-> k < ( G ` ( m + 1 ) ) ) ) |
252 |
178
|
adantrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( G ` ( m + 1 ) ) e. ZZ ) |
253 |
|
zltlem1 |
|- ( ( k e. ZZ /\ ( G ` ( m + 1 ) ) e. ZZ ) -> ( k < ( G ` ( m + 1 ) ) <-> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
254 |
244 252 253
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( k < ( G ` ( m + 1 ) ) <-> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
255 |
250 251 254
|
3bitrd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( `' G ` k ) < ( m + 1 ) <-> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
256 |
247 255
|
anbi12d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) <-> ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) ) |
257 |
232 256
|
mtbid |
|- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> -. ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
258 |
257
|
expr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( k e. A -> -. ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) ) |
259 |
258
|
con2d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) -> -. k e. A ) ) |
260 |
|
elfzle1 |
|- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> ( ( G ` m ) + 1 ) <_ k ) |
261 |
|
elfzle2 |
|- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) |
262 |
260 261
|
jca |
|- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
263 |
259 262
|
impel |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> -. k e. A ) |
264 |
223 263
|
eldifd |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) |
265 |
213 264 9
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> ( F ` k ) = Z ) |
266 |
160 164 186 212 265
|
seqid2 |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
267 |
266
|
oveq1d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) = ( ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
268 |
|
fveq2 |
|- ( n = ( m + 1 ) -> ( H ` n ) = ( H ` ( m + 1 ) ) ) |
269 |
|
2fveq3 |
|- ( n = ( m + 1 ) -> ( F ` ( G ` n ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) |
270 |
268 269
|
eqeq12d |
|- ( n = ( m + 1 ) -> ( ( H ` n ) = ( F ` ( G ` n ) ) <-> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) ) |
271 |
270
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( ph -> ( H ` n ) = ( F ` ( G ` n ) ) ) <-> ( ph -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) ) ) |
272 |
271 136
|
vtoclga |
|- ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( ph -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) ) |
273 |
272
|
impcom |
|- ( ( ph /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) |
274 |
273
|
adantlr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) |
275 |
274
|
oveq2d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
276 |
93
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> M e. ZZ ) |
277 |
178
|
zcnd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. CC ) |
278 |
|
ax-1cn |
|- 1 e. CC |
279 |
|
npcan |
|- ( ( ( G ` ( m + 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) = ( G ` ( m + 1 ) ) ) |
280 |
277 278 279
|
sylancl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) = ( G ` ( m + 1 ) ) ) |
281 |
|
uztrn |
|- ( ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) /\ ( G ` m ) e. ( ZZ>= ` M ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` M ) ) |
282 |
186 164 281
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` M ) ) |
283 |
|
eluzp1p1 |
|- ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` M ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
284 |
282 283
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
285 |
280 284
|
eqeltrrd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. ( ZZ>= ` ( M + 1 ) ) ) |
286 |
|
seqm1 |
|- ( ( M e. ZZ /\ ( G ` ( m + 1 ) ) e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
287 |
276 285 286
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
288 |
267 275 287
|
3eqtr4rd |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) ) |
289 |
|
seqp1 |
|- ( m e. ( ZZ>= ` 1 ) -> ( seq 1 ( .+ , H ) ` ( m + 1 ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) |
290 |
148 289
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq 1 ( .+ , H ) ` ( m + 1 ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) |
291 |
288 290
|
eqeq12d |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) <-> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) ) |
292 |
159 291
|
syl5ibr |
|- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) |
293 |
292
|
ex |
|- ( ( ph /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
294 |
293
|
a2d |
|- ( ( ph /\ m e. NN ) -> ( ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
295 |
158 294
|
syld |
|- ( ( ph /\ m e. NN ) -> ( ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
296 |
295
|
expcom |
|- ( m e. NN -> ( ph -> ( ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) ) |
297 |
296
|
a2d |
|- ( m e. NN -> ( ( ph -> ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) -> ( ph -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) ) |
298 |
18 24 30 36 145 297
|
nnind |
|- ( N e. NN -> ( ph -> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) ) |
299 |
12 298
|
mpcom |
|- ( ph -> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) |
300 |
6 299
|
mpd |
|- ( ph -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) |