Step |
Hyp |
Ref |
Expression |
1 |
|
seqcoll2.1 |
|- ( ( ph /\ k e. S ) -> ( Z .+ k ) = k ) |
2 |
|
seqcoll2.1b |
|- ( ( ph /\ k e. S ) -> ( k .+ Z ) = k ) |
3 |
|
seqcoll2.c |
|- ( ( ph /\ ( k e. S /\ n e. S ) ) -> ( k .+ n ) e. S ) |
4 |
|
seqcoll2.a |
|- ( ph -> Z e. S ) |
5 |
|
seqcoll2.2 |
|- ( ph -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
6 |
|
seqcoll2.3 |
|- ( ph -> A =/= (/) ) |
7 |
|
seqcoll2.5 |
|- ( ph -> A C_ ( M ... N ) ) |
8 |
|
seqcoll2.6 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. S ) |
9 |
|
seqcoll2.7 |
|- ( ( ph /\ k e. ( ( M ... N ) \ A ) ) -> ( F ` k ) = Z ) |
10 |
|
seqcoll2.8 |
|- ( ( ph /\ n e. ( 1 ... ( # ` A ) ) ) -> ( H ` n ) = ( F ` ( G ` n ) ) ) |
11 |
|
fzssuz |
|- ( M ... N ) C_ ( ZZ>= ` M ) |
12 |
|
isof1o |
|- ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
13 |
5 12
|
syl |
|- ( ph -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
14 |
|
f1of |
|- ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> G : ( 1 ... ( # ` A ) ) --> A ) |
15 |
13 14
|
syl |
|- ( ph -> G : ( 1 ... ( # ` A ) ) --> A ) |
16 |
|
fzfi |
|- ( M ... N ) e. Fin |
17 |
|
ssfi |
|- ( ( ( M ... N ) e. Fin /\ A C_ ( M ... N ) ) -> A e. Fin ) |
18 |
16 7 17
|
sylancr |
|- ( ph -> A e. Fin ) |
19 |
|
hasheq0 |
|- ( A e. Fin -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
20 |
18 19
|
syl |
|- ( ph -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
21 |
20
|
necon3bbid |
|- ( ph -> ( -. ( # ` A ) = 0 <-> A =/= (/) ) ) |
22 |
6 21
|
mpbird |
|- ( ph -> -. ( # ` A ) = 0 ) |
23 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
24 |
18 23
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
25 |
|
elnn0 |
|- ( ( # ` A ) e. NN0 <-> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
26 |
24 25
|
sylib |
|- ( ph -> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
27 |
26
|
ord |
|- ( ph -> ( -. ( # ` A ) e. NN -> ( # ` A ) = 0 ) ) |
28 |
22 27
|
mt3d |
|- ( ph -> ( # ` A ) e. NN ) |
29 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
30 |
28 29
|
eleqtrdi |
|- ( ph -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
31 |
|
eluzfz2 |
|- ( ( # ` A ) e. ( ZZ>= ` 1 ) -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
32 |
30 31
|
syl |
|- ( ph -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
33 |
15 32
|
ffvelrnd |
|- ( ph -> ( G ` ( # ` A ) ) e. A ) |
34 |
7 33
|
sseldd |
|- ( ph -> ( G ` ( # ` A ) ) e. ( M ... N ) ) |
35 |
11 34
|
sselid |
|- ( ph -> ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) ) |
36 |
|
elfzuz3 |
|- ( ( G ` ( # ` A ) ) e. ( M ... N ) -> N e. ( ZZ>= ` ( G ` ( # ` A ) ) ) ) |
37 |
34 36
|
syl |
|- ( ph -> N e. ( ZZ>= ` ( G ` ( # ` A ) ) ) ) |
38 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( G ` ( # ` A ) ) ) -> ( M ... ( G ` ( # ` A ) ) ) C_ ( M ... N ) ) |
39 |
37 38
|
syl |
|- ( ph -> ( M ... ( G ` ( # ` A ) ) ) C_ ( M ... N ) ) |
40 |
39
|
sselda |
|- ( ( ph /\ k e. ( M ... ( G ` ( # ` A ) ) ) ) -> k e. ( M ... N ) ) |
41 |
40 8
|
syldan |
|- ( ( ph /\ k e. ( M ... ( G ` ( # ` A ) ) ) ) -> ( F ` k ) e. S ) |
42 |
35 41 3
|
seqcl |
|- ( ph -> ( seq M ( .+ , F ) ` ( G ` ( # ` A ) ) ) e. S ) |
43 |
|
peano2uz |
|- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) -> ( ( G ` ( # ` A ) ) + 1 ) e. ( ZZ>= ` M ) ) |
44 |
35 43
|
syl |
|- ( ph -> ( ( G ` ( # ` A ) ) + 1 ) e. ( ZZ>= ` M ) ) |
45 |
|
fzss1 |
|- ( ( ( G ` ( # ` A ) ) + 1 ) e. ( ZZ>= ` M ) -> ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) C_ ( M ... N ) ) |
46 |
44 45
|
syl |
|- ( ph -> ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) C_ ( M ... N ) ) |
47 |
46
|
sselda |
|- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> k e. ( M ... N ) ) |
48 |
|
eluzelre |
|- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) -> ( G ` ( # ` A ) ) e. RR ) |
49 |
35 48
|
syl |
|- ( ph -> ( G ` ( # ` A ) ) e. RR ) |
50 |
49
|
adantr |
|- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( G ` ( # ` A ) ) e. RR ) |
51 |
|
peano2re |
|- ( ( G ` ( # ` A ) ) e. RR -> ( ( G ` ( # ` A ) ) + 1 ) e. RR ) |
52 |
50 51
|
syl |
|- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( ( G ` ( # ` A ) ) + 1 ) e. RR ) |
53 |
|
elfzelz |
|- ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) -> k e. ZZ ) |
54 |
53
|
zred |
|- ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) -> k e. RR ) |
55 |
54
|
adantl |
|- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> k e. RR ) |
56 |
50
|
ltp1d |
|- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( G ` ( # ` A ) ) < ( ( G ` ( # ` A ) ) + 1 ) ) |
57 |
|
elfzle1 |
|- ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) -> ( ( G ` ( # ` A ) ) + 1 ) <_ k ) |
58 |
57
|
adantl |
|- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( ( G ` ( # ` A ) ) + 1 ) <_ k ) |
59 |
50 52 55 56 58
|
ltletrd |
|- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( G ` ( # ` A ) ) < k ) |
60 |
13
|
adantr |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
61 |
|
f1ocnv |
|- ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) ) |
62 |
60 61
|
syl |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) ) |
63 |
|
f1of |
|- ( `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
64 |
62 63
|
syl |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
65 |
|
simprr |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> k e. A ) |
66 |
64 65
|
ffvelrnd |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) |
67 |
66
|
elfzelzd |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( `' G ` k ) e. ZZ ) |
68 |
67
|
zred |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( `' G ` k ) e. RR ) |
69 |
24
|
adantr |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( # ` A ) e. NN0 ) |
70 |
69
|
nn0red |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( # ` A ) e. RR ) |
71 |
|
elfzle2 |
|- ( ( `' G ` k ) e. ( 1 ... ( # ` A ) ) -> ( `' G ` k ) <_ ( # ` A ) ) |
72 |
66 71
|
syl |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( `' G ` k ) <_ ( # ` A ) ) |
73 |
68 70 72
|
lensymd |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> -. ( # ` A ) < ( `' G ` k ) ) |
74 |
5
|
adantr |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
75 |
32
|
adantr |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
76 |
|
isorel |
|- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( # ` A ) e. ( 1 ... ( # ` A ) ) /\ ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) ) -> ( ( # ` A ) < ( `' G ` k ) <-> ( G ` ( # ` A ) ) < ( G ` ( `' G ` k ) ) ) ) |
77 |
74 75 66 76
|
syl12anc |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( ( # ` A ) < ( `' G ` k ) <-> ( G ` ( # ` A ) ) < ( G ` ( `' G ` k ) ) ) ) |
78 |
|
f1ocnvfv2 |
|- ( ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ k e. A ) -> ( G ` ( `' G ` k ) ) = k ) |
79 |
60 65 78
|
syl2anc |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( G ` ( `' G ` k ) ) = k ) |
80 |
79
|
breq2d |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( ( G ` ( # ` A ) ) < ( G ` ( `' G ` k ) ) <-> ( G ` ( # ` A ) ) < k ) ) |
81 |
77 80
|
bitrd |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( ( # ` A ) < ( `' G ` k ) <-> ( G ` ( # ` A ) ) < k ) ) |
82 |
73 81
|
mtbid |
|- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> -. ( G ` ( # ` A ) ) < k ) |
83 |
82
|
expr |
|- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( k e. A -> -. ( G ` ( # ` A ) ) < k ) ) |
84 |
59 83
|
mt2d |
|- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> -. k e. A ) |
85 |
47 84
|
eldifd |
|- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> k e. ( ( M ... N ) \ A ) ) |
86 |
85 9
|
syldan |
|- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( F ` k ) = Z ) |
87 |
2 35 37 42 86
|
seqid2 |
|- ( ph -> ( seq M ( .+ , F ) ` ( G ` ( # ` A ) ) ) = ( seq M ( .+ , F ) ` N ) ) |
88 |
7 11
|
sstrdi |
|- ( ph -> A C_ ( ZZ>= ` M ) ) |
89 |
39
|
ssdifd |
|- ( ph -> ( ( M ... ( G ` ( # ` A ) ) ) \ A ) C_ ( ( M ... N ) \ A ) ) |
90 |
89
|
sselda |
|- ( ( ph /\ k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) -> k e. ( ( M ... N ) \ A ) ) |
91 |
90 9
|
syldan |
|- ( ( ph /\ k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) -> ( F ` k ) = Z ) |
92 |
1 2 3 4 5 32 88 41 91 10
|
seqcoll |
|- ( ph -> ( seq M ( .+ , F ) ` ( G ` ( # ` A ) ) ) = ( seq 1 ( .+ , H ) ` ( # ` A ) ) ) |
93 |
87 92
|
eqtr3d |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq 1 ( .+ , H ) ` ( # ` A ) ) ) |