Metamath Proof Explorer


Theorem seqdistr

Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqdistr.1
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S )
seqdistr.2
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( C T ( x .+ y ) ) = ( ( C T x ) .+ ( C T y ) ) )
seqdistr.3
|- ( ph -> N e. ( ZZ>= ` M ) )
seqdistr.4
|- ( ( ph /\ x e. ( M ... N ) ) -> ( G ` x ) e. S )
seqdistr.5
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) = ( C T ( G ` x ) ) )
Assertion seqdistr
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( C T ( seq M ( .+ , G ) ` N ) ) )

Proof

Step Hyp Ref Expression
1 seqdistr.1
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S )
2 seqdistr.2
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( C T ( x .+ y ) ) = ( ( C T x ) .+ ( C T y ) ) )
3 seqdistr.3
 |-  ( ph -> N e. ( ZZ>= ` M ) )
4 seqdistr.4
 |-  ( ( ph /\ x e. ( M ... N ) ) -> ( G ` x ) e. S )
5 seqdistr.5
 |-  ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) = ( C T ( G ` x ) ) )
6 oveq2
 |-  ( z = ( x .+ y ) -> ( C T z ) = ( C T ( x .+ y ) ) )
7 eqid
 |-  ( z e. S |-> ( C T z ) ) = ( z e. S |-> ( C T z ) )
8 ovex
 |-  ( C T ( x .+ y ) ) e. _V
9 6 7 8 fvmpt
 |-  ( ( x .+ y ) e. S -> ( ( z e. S |-> ( C T z ) ) ` ( x .+ y ) ) = ( C T ( x .+ y ) ) )
10 1 9 syl
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( x .+ y ) ) = ( C T ( x .+ y ) ) )
11 oveq2
 |-  ( z = x -> ( C T z ) = ( C T x ) )
12 ovex
 |-  ( C T x ) e. _V
13 11 7 12 fvmpt
 |-  ( x e. S -> ( ( z e. S |-> ( C T z ) ) ` x ) = ( C T x ) )
14 13 ad2antrl
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` x ) = ( C T x ) )
15 oveq2
 |-  ( z = y -> ( C T z ) = ( C T y ) )
16 ovex
 |-  ( C T y ) e. _V
17 15 7 16 fvmpt
 |-  ( y e. S -> ( ( z e. S |-> ( C T z ) ) ` y ) = ( C T y ) )
18 17 ad2antll
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` y ) = ( C T y ) )
19 14 18 oveq12d
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( ( z e. S |-> ( C T z ) ) ` x ) .+ ( ( z e. S |-> ( C T z ) ) ` y ) ) = ( ( C T x ) .+ ( C T y ) ) )
20 2 10 19 3eqtr4d
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( x .+ y ) ) = ( ( ( z e. S |-> ( C T z ) ) ` x ) .+ ( ( z e. S |-> ( C T z ) ) ` y ) ) )
21 oveq2
 |-  ( z = ( G ` x ) -> ( C T z ) = ( C T ( G ` x ) ) )
22 ovex
 |-  ( C T ( G ` x ) ) e. _V
23 21 7 22 fvmpt
 |-  ( ( G ` x ) e. S -> ( ( z e. S |-> ( C T z ) ) ` ( G ` x ) ) = ( C T ( G ` x ) ) )
24 4 23 syl
 |-  ( ( ph /\ x e. ( M ... N ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( G ` x ) ) = ( C T ( G ` x ) ) )
25 24 5 eqtr4d
 |-  ( ( ph /\ x e. ( M ... N ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( G ` x ) ) = ( F ` x ) )
26 1 4 3 20 25 seqhomo
 |-  ( ph -> ( ( z e. S |-> ( C T z ) ) ` ( seq M ( .+ , G ) ` N ) ) = ( seq M ( .+ , F ) ` N ) )
27 3 4 1 seqcl
 |-  ( ph -> ( seq M ( .+ , G ) ` N ) e. S )
28 oveq2
 |-  ( z = ( seq M ( .+ , G ) ` N ) -> ( C T z ) = ( C T ( seq M ( .+ , G ) ` N ) ) )
29 ovex
 |-  ( C T ( seq M ( .+ , G ) ` N ) ) e. _V
30 28 7 29 fvmpt
 |-  ( ( seq M ( .+ , G ) ` N ) e. S -> ( ( z e. S |-> ( C T z ) ) ` ( seq M ( .+ , G ) ` N ) ) = ( C T ( seq M ( .+ , G ) ` N ) ) )
31 27 30 syl
 |-  ( ph -> ( ( z e. S |-> ( C T z ) ) ` ( seq M ( .+ , G ) ` N ) ) = ( C T ( seq M ( .+ , G ) ` N ) ) )
32 26 31 eqtr3d
 |-  ( ph -> ( seq M ( .+ , F ) ` N ) = ( C T ( seq M ( .+ , G ) ` N ) ) )