Step |
Hyp |
Ref |
Expression |
1 |
|
seqdistr.1 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
2 |
|
seqdistr.2 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( C T ( x .+ y ) ) = ( ( C T x ) .+ ( C T y ) ) ) |
3 |
|
seqdistr.3 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
4 |
|
seqdistr.4 |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( G ` x ) e. S ) |
5 |
|
seqdistr.5 |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) = ( C T ( G ` x ) ) ) |
6 |
|
oveq2 |
|- ( z = ( x .+ y ) -> ( C T z ) = ( C T ( x .+ y ) ) ) |
7 |
|
eqid |
|- ( z e. S |-> ( C T z ) ) = ( z e. S |-> ( C T z ) ) |
8 |
|
ovex |
|- ( C T ( x .+ y ) ) e. _V |
9 |
6 7 8
|
fvmpt |
|- ( ( x .+ y ) e. S -> ( ( z e. S |-> ( C T z ) ) ` ( x .+ y ) ) = ( C T ( x .+ y ) ) ) |
10 |
1 9
|
syl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( x .+ y ) ) = ( C T ( x .+ y ) ) ) |
11 |
|
oveq2 |
|- ( z = x -> ( C T z ) = ( C T x ) ) |
12 |
|
ovex |
|- ( C T x ) e. _V |
13 |
11 7 12
|
fvmpt |
|- ( x e. S -> ( ( z e. S |-> ( C T z ) ) ` x ) = ( C T x ) ) |
14 |
13
|
ad2antrl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` x ) = ( C T x ) ) |
15 |
|
oveq2 |
|- ( z = y -> ( C T z ) = ( C T y ) ) |
16 |
|
ovex |
|- ( C T y ) e. _V |
17 |
15 7 16
|
fvmpt |
|- ( y e. S -> ( ( z e. S |-> ( C T z ) ) ` y ) = ( C T y ) ) |
18 |
17
|
ad2antll |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` y ) = ( C T y ) ) |
19 |
14 18
|
oveq12d |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( ( z e. S |-> ( C T z ) ) ` x ) .+ ( ( z e. S |-> ( C T z ) ) ` y ) ) = ( ( C T x ) .+ ( C T y ) ) ) |
20 |
2 10 19
|
3eqtr4d |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( x .+ y ) ) = ( ( ( z e. S |-> ( C T z ) ) ` x ) .+ ( ( z e. S |-> ( C T z ) ) ` y ) ) ) |
21 |
|
oveq2 |
|- ( z = ( G ` x ) -> ( C T z ) = ( C T ( G ` x ) ) ) |
22 |
|
ovex |
|- ( C T ( G ` x ) ) e. _V |
23 |
21 7 22
|
fvmpt |
|- ( ( G ` x ) e. S -> ( ( z e. S |-> ( C T z ) ) ` ( G ` x ) ) = ( C T ( G ` x ) ) ) |
24 |
4 23
|
syl |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( G ` x ) ) = ( C T ( G ` x ) ) ) |
25 |
24 5
|
eqtr4d |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( G ` x ) ) = ( F ` x ) ) |
26 |
1 4 3 20 25
|
seqhomo |
|- ( ph -> ( ( z e. S |-> ( C T z ) ) ` ( seq M ( .+ , G ) ` N ) ) = ( seq M ( .+ , F ) ` N ) ) |
27 |
3 4 1
|
seqcl |
|- ( ph -> ( seq M ( .+ , G ) ` N ) e. S ) |
28 |
|
oveq2 |
|- ( z = ( seq M ( .+ , G ) ` N ) -> ( C T z ) = ( C T ( seq M ( .+ , G ) ` N ) ) ) |
29 |
|
ovex |
|- ( C T ( seq M ( .+ , G ) ` N ) ) e. _V |
30 |
28 7 29
|
fvmpt |
|- ( ( seq M ( .+ , G ) ` N ) e. S -> ( ( z e. S |-> ( C T z ) ) ` ( seq M ( .+ , G ) ` N ) ) = ( C T ( seq M ( .+ , G ) ` N ) ) ) |
31 |
27 30
|
syl |
|- ( ph -> ( ( z e. S |-> ( C T z ) ) ` ( seq M ( .+ , G ) ` N ) ) = ( C T ( seq M ( .+ , G ) ` N ) ) ) |
32 |
26 31
|
eqtr3d |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( C T ( seq M ( .+ , G ) ` N ) ) ) |