Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( M = N -> ( F ` M ) = ( F ` N ) ) |
2 |
|
opeq12 |
|- ( ( M = N /\ ( F ` M ) = ( F ` N ) ) -> <. M , ( F ` M ) >. = <. N , ( F ` N ) >. ) |
3 |
1 2
|
mpdan |
|- ( M = N -> <. M , ( F ` M ) >. = <. N , ( F ` N ) >. ) |
4 |
|
rdgeq2 |
|- ( <. M , ( F ` M ) >. = <. N , ( F ` N ) >. -> rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) = rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. N , ( F ` N ) >. ) ) |
5 |
3 4
|
syl |
|- ( M = N -> rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) = rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. N , ( F ` N ) >. ) ) |
6 |
5
|
imaeq1d |
|- ( M = N -> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. N , ( F ` N ) >. ) " _om ) ) |
7 |
|
df-seq |
|- seq M ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
8 |
|
df-seq |
|- seq N ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. N , ( F ` N ) >. ) " _om ) |
9 |
6 7 8
|
3eqtr4g |
|- ( M = N -> seq M ( .+ , F ) = seq N ( .+ , F ) ) |