| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqexw.1 |
|- .+ e. _V |
| 2 |
|
seqexw.2 |
|- M e. ZZ |
| 3 |
|
seqfn |
|- ( M e. ZZ -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
| 4 |
2 3
|
ax-mp |
|- seq M ( .+ , F ) Fn ( ZZ>= ` M ) |
| 5 |
|
fnfun |
|- ( seq M ( .+ , F ) Fn ( ZZ>= ` M ) -> Fun seq M ( .+ , F ) ) |
| 6 |
4 5
|
ax-mp |
|- Fun seq M ( .+ , F ) |
| 7 |
4
|
fndmi |
|- dom seq M ( .+ , F ) = ( ZZ>= ` M ) |
| 8 |
|
fvex |
|- ( ZZ>= ` M ) e. _V |
| 9 |
7 8
|
eqeltri |
|- dom seq M ( .+ , F ) e. _V |
| 10 |
1
|
rnex |
|- ran .+ e. _V |
| 11 |
|
prex |
|- { (/) , ( F ` M ) } e. _V |
| 12 |
10 11
|
unex |
|- ( ran .+ u. { (/) , ( F ` M ) } ) e. _V |
| 13 |
|
fveq2 |
|- ( y = M -> ( seq M ( .+ , F ) ` y ) = ( seq M ( .+ , F ) ` M ) ) |
| 14 |
13
|
eleq1d |
|- ( y = M -> ( ( seq M ( .+ , F ) ` y ) e. ( ran .+ u. { (/) , ( F ` M ) } ) <-> ( seq M ( .+ , F ) ` M ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) ) |
| 15 |
|
fveq2 |
|- ( y = z -> ( seq M ( .+ , F ) ` y ) = ( seq M ( .+ , F ) ` z ) ) |
| 16 |
15
|
eleq1d |
|- ( y = z -> ( ( seq M ( .+ , F ) ` y ) e. ( ran .+ u. { (/) , ( F ` M ) } ) <-> ( seq M ( .+ , F ) ` z ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) ) |
| 17 |
|
fveq2 |
|- ( y = ( z + 1 ) -> ( seq M ( .+ , F ) ` y ) = ( seq M ( .+ , F ) ` ( z + 1 ) ) ) |
| 18 |
17
|
eleq1d |
|- ( y = ( z + 1 ) -> ( ( seq M ( .+ , F ) ` y ) e. ( ran .+ u. { (/) , ( F ` M ) } ) <-> ( seq M ( .+ , F ) ` ( z + 1 ) ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) ) |
| 19 |
|
fveq2 |
|- ( y = x -> ( seq M ( .+ , F ) ` y ) = ( seq M ( .+ , F ) ` x ) ) |
| 20 |
19
|
eleq1d |
|- ( y = x -> ( ( seq M ( .+ , F ) ` y ) e. ( ran .+ u. { (/) , ( F ` M ) } ) <-> ( seq M ( .+ , F ) ` x ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) ) |
| 21 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 22 |
|
ssun2 |
|- { (/) , ( F ` M ) } C_ ( ran .+ u. { (/) , ( F ` M ) } ) |
| 23 |
|
fvex |
|- ( F ` M ) e. _V |
| 24 |
23
|
prid2 |
|- ( F ` M ) e. { (/) , ( F ` M ) } |
| 25 |
22 24
|
sselii |
|- ( F ` M ) e. ( ran .+ u. { (/) , ( F ` M ) } ) |
| 26 |
21 25
|
eqeltrdi |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) |
| 27 |
|
seqp1 |
|- ( z e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( z + 1 ) ) = ( ( seq M ( .+ , F ) ` z ) .+ ( F ` ( z + 1 ) ) ) ) |
| 28 |
27
|
adantr |
|- ( ( z e. ( ZZ>= ` M ) /\ ( seq M ( .+ , F ) ` z ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) -> ( seq M ( .+ , F ) ` ( z + 1 ) ) = ( ( seq M ( .+ , F ) ` z ) .+ ( F ` ( z + 1 ) ) ) ) |
| 29 |
|
df-ov |
|- ( ( seq M ( .+ , F ) ` z ) .+ ( F ` ( z + 1 ) ) ) = ( .+ ` <. ( seq M ( .+ , F ) ` z ) , ( F ` ( z + 1 ) ) >. ) |
| 30 |
|
snsspr1 |
|- { (/) } C_ { (/) , ( F ` M ) } |
| 31 |
|
unss2 |
|- ( { (/) } C_ { (/) , ( F ` M ) } -> ( ran .+ u. { (/) } ) C_ ( ran .+ u. { (/) , ( F ` M ) } ) ) |
| 32 |
30 31
|
ax-mp |
|- ( ran .+ u. { (/) } ) C_ ( ran .+ u. { (/) , ( F ` M ) } ) |
| 33 |
|
fvrn0 |
|- ( .+ ` <. ( seq M ( .+ , F ) ` z ) , ( F ` ( z + 1 ) ) >. ) e. ( ran .+ u. { (/) } ) |
| 34 |
32 33
|
sselii |
|- ( .+ ` <. ( seq M ( .+ , F ) ` z ) , ( F ` ( z + 1 ) ) >. ) e. ( ran .+ u. { (/) , ( F ` M ) } ) |
| 35 |
29 34
|
eqeltri |
|- ( ( seq M ( .+ , F ) ` z ) .+ ( F ` ( z + 1 ) ) ) e. ( ran .+ u. { (/) , ( F ` M ) } ) |
| 36 |
35
|
a1i |
|- ( ( z e. ( ZZ>= ` M ) /\ ( seq M ( .+ , F ) ` z ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) -> ( ( seq M ( .+ , F ) ` z ) .+ ( F ` ( z + 1 ) ) ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) |
| 37 |
28 36
|
eqeltrd |
|- ( ( z e. ( ZZ>= ` M ) /\ ( seq M ( .+ , F ) ` z ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) -> ( seq M ( .+ , F ) ` ( z + 1 ) ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) |
| 38 |
37
|
ex |
|- ( z e. ( ZZ>= ` M ) -> ( ( seq M ( .+ , F ) ` z ) e. ( ran .+ u. { (/) , ( F ` M ) } ) -> ( seq M ( .+ , F ) ` ( z + 1 ) ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) ) |
| 39 |
14 16 18 20 26 38
|
uzind4 |
|- ( x e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` x ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) |
| 40 |
39
|
rgen |
|- A. x e. ( ZZ>= ` M ) ( seq M ( .+ , F ) ` x ) e. ( ran .+ u. { (/) , ( F ` M ) } ) |
| 41 |
|
fnfvrnss |
|- ( ( seq M ( .+ , F ) Fn ( ZZ>= ` M ) /\ A. x e. ( ZZ>= ` M ) ( seq M ( .+ , F ) ` x ) e. ( ran .+ u. { (/) , ( F ` M ) } ) ) -> ran seq M ( .+ , F ) C_ ( ran .+ u. { (/) , ( F ` M ) } ) ) |
| 42 |
4 40 41
|
mp2an |
|- ran seq M ( .+ , F ) C_ ( ran .+ u. { (/) , ( F ` M ) } ) |
| 43 |
12 42
|
ssexi |
|- ran seq M ( .+ , F ) e. _V |
| 44 |
|
funexw |
|- ( ( Fun seq M ( .+ , F ) /\ dom seq M ( .+ , F ) e. _V /\ ran seq M ( .+ , F ) e. _V ) -> seq M ( .+ , F ) e. _V ) |
| 45 |
6 9 43 44
|
mp3an |
|- seq M ( .+ , F ) e. _V |