Step |
Hyp |
Ref |
Expression |
1 |
|
seqf.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
seqf.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
seqf.3 |
|- ( ( ph /\ x e. Z ) -> ( F ` x ) e. S ) |
4 |
|
seqf.4 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
5 |
|
fveq2 |
|- ( x = M -> ( F ` x ) = ( F ` M ) ) |
6 |
5
|
eleq1d |
|- ( x = M -> ( ( F ` x ) e. S <-> ( F ` M ) e. S ) ) |
7 |
3
|
ralrimiva |
|- ( ph -> A. x e. Z ( F ` x ) e. S ) |
8 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
9 |
2 8
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
10 |
9 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
11 |
6 7 10
|
rspcdva |
|- ( ph -> ( F ` M ) e. S ) |
12 |
|
peano2uzr |
|- ( ( M e. ZZ /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> x e. ( ZZ>= ` M ) ) |
13 |
2 12
|
sylan |
|- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> x e. ( ZZ>= ` M ) ) |
14 |
13 1
|
eleqtrrdi |
|- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> x e. Z ) |
15 |
14 3
|
syldan |
|- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> ( F ` x ) e. S ) |
16 |
11 4 1 2 15
|
seqf2 |
|- ( ph -> seq M ( .+ , F ) : Z --> S ) |