| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqf1o.1 |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) | 
						
							| 2 |  | seqf1o.2 |  |-  ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) | 
						
							| 3 |  | seqf1o.3 |  |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) | 
						
							| 4 |  | seqf1o.4 |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 5 |  | seqf1o.5 |  |-  ( ph -> C C_ S ) | 
						
							| 6 |  | seqf1olem.5 |  |-  ( ph -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) | 
						
							| 7 |  | seqf1olem.6 |  |-  ( ph -> G : ( M ... ( N + 1 ) ) --> C ) | 
						
							| 8 |  | seqf1olem.7 |  |-  J = ( k e. ( M ... N ) |-> ( F ` if ( k < K , k , ( k + 1 ) ) ) ) | 
						
							| 9 |  | seqf1olem.8 |  |-  K = ( `' F ` ( N + 1 ) ) | 
						
							| 10 |  | seqf1olem.9 |  |-  ( ph -> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) | 
						
							| 11 | 7 | ffnd |  |-  ( ph -> G Fn ( M ... ( N + 1 ) ) ) | 
						
							| 12 |  | fzssp1 |  |-  ( M ... N ) C_ ( M ... ( N + 1 ) ) | 
						
							| 13 |  | fnssres |  |-  ( ( G Fn ( M ... ( N + 1 ) ) /\ ( M ... N ) C_ ( M ... ( N + 1 ) ) ) -> ( G |` ( M ... N ) ) Fn ( M ... N ) ) | 
						
							| 14 | 11 12 13 | sylancl |  |-  ( ph -> ( G |` ( M ... N ) ) Fn ( M ... N ) ) | 
						
							| 15 |  | fzfid |  |-  ( ph -> ( M ... N ) e. Fin ) | 
						
							| 16 |  | fnfi |  |-  ( ( ( G |` ( M ... N ) ) Fn ( M ... N ) /\ ( M ... N ) e. Fin ) -> ( G |` ( M ... N ) ) e. Fin ) | 
						
							| 17 | 14 15 16 | syl2anc |  |-  ( ph -> ( G |` ( M ... N ) ) e. Fin ) | 
						
							| 18 | 17 | elexd |  |-  ( ph -> ( G |` ( M ... N ) ) e. _V ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 | seqf1olem1 |  |-  ( ph -> J : ( M ... N ) -1-1-onto-> ( M ... N ) ) | 
						
							| 20 |  | f1of |  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N ) -> J : ( M ... N ) --> ( M ... N ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> J : ( M ... N ) --> ( M ... N ) ) | 
						
							| 22 |  | fex2 |  |-  ( ( J : ( M ... N ) --> ( M ... N ) /\ ( M ... N ) e. Fin /\ ( M ... N ) e. Fin ) -> J e. _V ) | 
						
							| 23 | 21 15 15 22 | syl3anc |  |-  ( ph -> J e. _V ) | 
						
							| 24 | 18 23 | jca |  |-  ( ph -> ( ( G |` ( M ... N ) ) e. _V /\ J e. _V ) ) | 
						
							| 25 |  | fssres |  |-  ( ( G : ( M ... ( N + 1 ) ) --> C /\ ( M ... N ) C_ ( M ... ( N + 1 ) ) ) -> ( G |` ( M ... N ) ) : ( M ... N ) --> C ) | 
						
							| 26 | 7 12 25 | sylancl |  |-  ( ph -> ( G |` ( M ... N ) ) : ( M ... N ) --> C ) | 
						
							| 27 | 19 26 | jca |  |-  ( ph -> ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) ) | 
						
							| 28 |  | f1oeq1 |  |-  ( f = J -> ( f : ( M ... N ) -1-1-onto-> ( M ... N ) <-> J : ( M ... N ) -1-1-onto-> ( M ... N ) ) ) | 
						
							| 29 |  | feq1 |  |-  ( g = ( G |` ( M ... N ) ) -> ( g : ( M ... N ) --> C <-> ( G |` ( M ... N ) ) : ( M ... N ) --> C ) ) | 
						
							| 30 | 28 29 | bi2anan9r |  |-  ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) <-> ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) ) ) | 
						
							| 31 |  | coeq1 |  |-  ( g = ( G |` ( M ... N ) ) -> ( g o. f ) = ( ( G |` ( M ... N ) ) o. f ) ) | 
						
							| 32 |  | coeq2 |  |-  ( f = J -> ( ( G |` ( M ... N ) ) o. f ) = ( ( G |` ( M ... N ) ) o. J ) ) | 
						
							| 33 | 31 32 | sylan9eq |  |-  ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( g o. f ) = ( ( G |` ( M ... N ) ) o. J ) ) | 
						
							| 34 | 33 | seqeq3d |  |-  ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> seq M ( .+ , ( g o. f ) ) = seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ) | 
						
							| 35 | 34 | fveq1d |  |-  ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) | 
						
							| 36 |  | simpl |  |-  ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> g = ( G |` ( M ... N ) ) ) | 
						
							| 37 | 36 | seqeq3d |  |-  ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> seq M ( .+ , g ) = seq M ( .+ , ( G |` ( M ... N ) ) ) ) | 
						
							| 38 | 37 | fveq1d |  |-  ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( seq M ( .+ , g ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) | 
						
							| 39 | 35 38 | eqeq12d |  |-  ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) <-> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) ) | 
						
							| 40 | 30 39 | imbi12d |  |-  ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) <-> ( ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) ) ) | 
						
							| 41 | 40 | spc2gv |  |-  ( ( ( G |` ( M ... N ) ) e. _V /\ J e. _V ) -> ( A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) -> ( ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) ) ) | 
						
							| 42 | 24 10 27 41 | syl3c |  |-  ( ph -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) | 
						
							| 43 |  | fvres |  |-  ( x e. ( M ... N ) -> ( ( G |` ( M ... N ) ) ` x ) = ( G ` x ) ) | 
						
							| 44 | 43 | adantl |  |-  ( ( ph /\ x e. ( M ... N ) ) -> ( ( G |` ( M ... N ) ) ` x ) = ( G ` x ) ) | 
						
							| 45 | 4 44 | seqfveq |  |-  ( ph -> ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) = ( seq M ( .+ , G ) ` N ) ) | 
						
							| 46 | 42 45 | eqtrd |  |-  ( ph -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , G ) ` N ) ) | 
						
							| 47 | 46 | oveq1d |  |-  ( ph -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 48 | 1 | adantlr |  |-  ( ( ( ph /\ K e. ( M ... N ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) | 
						
							| 49 | 3 | adantlr |  |-  ( ( ( ph /\ K e. ( M ... N ) ) /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) | 
						
							| 50 |  | elfzuz3 |  |-  ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) | 
						
							| 51 | 50 | adantl |  |-  ( ( ph /\ K e. ( M ... N ) ) -> N e. ( ZZ>= ` K ) ) | 
						
							| 52 |  | eluzp1p1 |  |-  ( N e. ( ZZ>= ` K ) -> ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) | 
						
							| 53 | 51 52 | syl |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) | 
						
							| 54 |  | elfzuz |  |-  ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ph /\ K e. ( M ... N ) ) -> K e. ( ZZ>= ` M ) ) | 
						
							| 56 |  | f1of |  |-  ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) | 
						
							| 57 | 6 56 | syl |  |-  ( ph -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) | 
						
							| 58 |  | fco |  |-  ( ( G : ( M ... ( N + 1 ) ) --> C /\ F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) -> ( G o. F ) : ( M ... ( N + 1 ) ) --> C ) | 
						
							| 59 | 7 57 58 | syl2anc |  |-  ( ph -> ( G o. F ) : ( M ... ( N + 1 ) ) --> C ) | 
						
							| 60 | 59 5 | fssd |  |-  ( ph -> ( G o. F ) : ( M ... ( N + 1 ) ) --> S ) | 
						
							| 61 | 60 | ffvelcdmda |  |-  ( ( ph /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) | 
						
							| 62 | 61 | adantlr |  |-  ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) | 
						
							| 63 | 48 49 53 55 62 | seqsplit |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) | 
						
							| 64 |  | elfzp12 |  |-  ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) | 
						
							| 65 | 64 | biimpa |  |-  ( ( N e. ( ZZ>= ` M ) /\ K e. ( M ... N ) ) -> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) | 
						
							| 66 | 4 65 | sylan |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) | 
						
							| 67 |  | seqeq1 |  |-  ( K = M -> seq K ( .+ , ( G o. F ) ) = seq M ( .+ , ( G o. F ) ) ) | 
						
							| 68 | 67 | eqcomd |  |-  ( K = M -> seq M ( .+ , ( G o. F ) ) = seq K ( .+ , ( G o. F ) ) ) | 
						
							| 69 | 68 | fveq1d |  |-  ( K = M -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( seq K ( .+ , ( G o. F ) ) ` K ) ) | 
						
							| 70 |  | f1ocnv |  |-  ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> `' F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) | 
						
							| 71 |  | f1of |  |-  ( `' F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> `' F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) | 
						
							| 72 | 6 70 71 | 3syl |  |-  ( ph -> `' F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) | 
						
							| 73 |  | peano2uz |  |-  ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 74 |  | eluzfz2 |  |-  ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) | 
						
							| 75 | 4 73 74 | 3syl |  |-  ( ph -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) | 
						
							| 76 | 72 75 | ffvelcdmd |  |-  ( ph -> ( `' F ` ( N + 1 ) ) e. ( M ... ( N + 1 ) ) ) | 
						
							| 77 | 9 76 | eqeltrid |  |-  ( ph -> K e. ( M ... ( N + 1 ) ) ) | 
						
							| 78 |  | elfzelz |  |-  ( K e. ( M ... ( N + 1 ) ) -> K e. ZZ ) | 
						
							| 79 |  | seq1 |  |-  ( K e. ZZ -> ( seq K ( .+ , ( G o. F ) ) ` K ) = ( ( G o. F ) ` K ) ) | 
						
							| 80 | 77 78 79 | 3syl |  |-  ( ph -> ( seq K ( .+ , ( G o. F ) ) ` K ) = ( ( G o. F ) ` K ) ) | 
						
							| 81 | 69 80 | sylan9eqr |  |-  ( ( ph /\ K = M ) -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( ( G o. F ) ` K ) ) | 
						
							| 82 | 81 | oveq1d |  |-  ( ( ph /\ K = M ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) | 
						
							| 83 |  | simpr |  |-  ( ( ph /\ K = M ) -> K = M ) | 
						
							| 84 |  | eluzfz1 |  |-  ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) | 
						
							| 85 | 4 84 | syl |  |-  ( ph -> M e. ( M ... N ) ) | 
						
							| 86 | 85 | adantr |  |-  ( ( ph /\ K = M ) -> M e. ( M ... N ) ) | 
						
							| 87 | 83 86 | eqeltrd |  |-  ( ( ph /\ K = M ) -> K e. ( M ... N ) ) | 
						
							| 88 | 2 | adantlr |  |-  ( ( ( ph /\ K e. ( M ... N ) ) /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) | 
						
							| 89 | 5 | adantr |  |-  ( ( ph /\ K e. ( M ... N ) ) -> C C_ S ) | 
						
							| 90 | 59 | adantr |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( G o. F ) : ( M ... ( N + 1 ) ) --> C ) | 
						
							| 91 | 77 | adantr |  |-  ( ( ph /\ K e. ( M ... N ) ) -> K e. ( M ... ( N + 1 ) ) ) | 
						
							| 92 |  | peano2uz |  |-  ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 93 |  | fzss1 |  |-  ( ( K + 1 ) e. ( ZZ>= ` M ) -> ( ( K + 1 ) ... ( N + 1 ) ) C_ ( M ... ( N + 1 ) ) ) | 
						
							| 94 | 55 92 93 | 3syl |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( ( K + 1 ) ... ( N + 1 ) ) C_ ( M ... ( N + 1 ) ) ) | 
						
							| 95 | 48 88 49 53 89 90 91 94 | seqf1olem2a |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) .+ ( ( G o. F ) ` K ) ) ) | 
						
							| 96 |  | 1zzd |  |-  ( ( ph /\ K e. ( M ... N ) ) -> 1 e. ZZ ) | 
						
							| 97 |  | elfzuz |  |-  ( K e. ( M ... ( N + 1 ) ) -> K e. ( ZZ>= ` M ) ) | 
						
							| 98 |  | fzss1 |  |-  ( K e. ( ZZ>= ` M ) -> ( K ... N ) C_ ( M ... N ) ) | 
						
							| 99 | 77 97 98 | 3syl |  |-  ( ph -> ( K ... N ) C_ ( M ... N ) ) | 
						
							| 100 | 99 | sselda |  |-  ( ( ph /\ x e. ( K ... N ) ) -> x e. ( M ... N ) ) | 
						
							| 101 | 21 | ffvelcdmda |  |-  ( ( ph /\ x e. ( M ... N ) ) -> ( J ` x ) e. ( M ... N ) ) | 
						
							| 102 | 100 101 | syldan |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( J ` x ) e. ( M ... N ) ) | 
						
							| 103 | 102 | fvresd |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( G ` ( J ` x ) ) ) | 
						
							| 104 |  | breq1 |  |-  ( k = x -> ( k < K <-> x < K ) ) | 
						
							| 105 |  | id |  |-  ( k = x -> k = x ) | 
						
							| 106 |  | oveq1 |  |-  ( k = x -> ( k + 1 ) = ( x + 1 ) ) | 
						
							| 107 | 104 105 106 | ifbieq12d |  |-  ( k = x -> if ( k < K , k , ( k + 1 ) ) = if ( x < K , x , ( x + 1 ) ) ) | 
						
							| 108 | 107 | fveq2d |  |-  ( k = x -> ( F ` if ( k < K , k , ( k + 1 ) ) ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) | 
						
							| 109 |  | fvex |  |-  ( F ` if ( x < K , x , ( x + 1 ) ) ) e. _V | 
						
							| 110 | 108 8 109 | fvmpt |  |-  ( x e. ( M ... N ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) | 
						
							| 111 | 100 110 | syl |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) | 
						
							| 112 | 77 78 | syl |  |-  ( ph -> K e. ZZ ) | 
						
							| 113 | 112 | zred |  |-  ( ph -> K e. RR ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ph /\ x e. ( K ... N ) ) -> K e. RR ) | 
						
							| 115 |  | elfzelz |  |-  ( x e. ( K ... N ) -> x e. ZZ ) | 
						
							| 116 | 115 | adantl |  |-  ( ( ph /\ x e. ( K ... N ) ) -> x e. ZZ ) | 
						
							| 117 | 116 | zred |  |-  ( ( ph /\ x e. ( K ... N ) ) -> x e. RR ) | 
						
							| 118 |  | elfzle1 |  |-  ( x e. ( K ... N ) -> K <_ x ) | 
						
							| 119 | 118 | adantl |  |-  ( ( ph /\ x e. ( K ... N ) ) -> K <_ x ) | 
						
							| 120 | 114 117 119 | lensymd |  |-  ( ( ph /\ x e. ( K ... N ) ) -> -. x < K ) | 
						
							| 121 |  | iffalse |  |-  ( -. x < K -> if ( x < K , x , ( x + 1 ) ) = ( x + 1 ) ) | 
						
							| 122 | 121 | fveq2d |  |-  ( -. x < K -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` ( x + 1 ) ) ) | 
						
							| 123 | 120 122 | syl |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` ( x + 1 ) ) ) | 
						
							| 124 | 111 123 | eqtrd |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( J ` x ) = ( F ` ( x + 1 ) ) ) | 
						
							| 125 | 124 | fveq2d |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( G ` ( J ` x ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) | 
						
							| 126 | 103 125 | eqtrd |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) | 
						
							| 127 |  | fvco3 |  |-  ( ( J : ( M ... N ) --> ( M ... N ) /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) | 
						
							| 128 | 21 127 | sylan |  |-  ( ( ph /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) | 
						
							| 129 | 100 128 | syldan |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) | 
						
							| 130 |  | fzp1elp1 |  |-  ( x e. ( M ... N ) -> ( x + 1 ) e. ( M ... ( N + 1 ) ) ) | 
						
							| 131 | 100 130 | syl |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( x + 1 ) e. ( M ... ( N + 1 ) ) ) | 
						
							| 132 |  | fvco3 |  |-  ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ ( x + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` ( x + 1 ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) | 
						
							| 133 | 57 132 | sylan |  |-  ( ( ph /\ ( x + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` ( x + 1 ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) | 
						
							| 134 | 131 133 | syldan |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( ( G o. F ) ` ( x + 1 ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) | 
						
							| 135 | 126 129 134 | 3eqtr4d |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G o. F ) ` ( x + 1 ) ) ) | 
						
							| 136 | 135 | adantlr |  |-  ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G o. F ) ` ( x + 1 ) ) ) | 
						
							| 137 | 51 96 136 | seqshft2 |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) | 
						
							| 138 |  | fvco3 |  |-  ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ K e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` K ) = ( G ` ( F ` K ) ) ) | 
						
							| 139 | 57 77 138 | syl2anc |  |-  ( ph -> ( ( G o. F ) ` K ) = ( G ` ( F ` K ) ) ) | 
						
							| 140 | 9 | fveq2i |  |-  ( F ` K ) = ( F ` ( `' F ` ( N + 1 ) ) ) | 
						
							| 141 |  | f1ocnvfv2 |  |-  ( ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( N + 1 ) ) | 
						
							| 142 | 6 75 141 | syl2anc |  |-  ( ph -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( N + 1 ) ) | 
						
							| 143 | 140 142 | eqtrid |  |-  ( ph -> ( F ` K ) = ( N + 1 ) ) | 
						
							| 144 | 143 | fveq2d |  |-  ( ph -> ( G ` ( F ` K ) ) = ( G ` ( N + 1 ) ) ) | 
						
							| 145 | 139 144 | eqtr2d |  |-  ( ph -> ( G ` ( N + 1 ) ) = ( ( G o. F ) ` K ) ) | 
						
							| 146 | 145 | adantr |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( G ` ( N + 1 ) ) = ( ( G o. F ) ` K ) ) | 
						
							| 147 | 137 146 | oveq12d |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) .+ ( ( G o. F ) ` K ) ) ) | 
						
							| 148 | 95 147 | eqtr4d |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 149 | 87 148 | syldan |  |-  ( ( ph /\ K = M ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 150 | 83 | seqeq1d |  |-  ( ( ph /\ K = M ) -> seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) = seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ) | 
						
							| 151 | 150 | fveq1d |  |-  ( ( ph /\ K = M ) -> ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) | 
						
							| 152 | 151 | oveq1d |  |-  ( ( ph /\ K = M ) -> ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 153 | 82 149 152 | 3eqtrd |  |-  ( ( ph /\ K = M ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 154 |  | eluzel2 |  |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ ) | 
						
							| 155 | 4 154 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 156 |  | elfzuz |  |-  ( K e. ( ( M + 1 ) ... N ) -> K e. ( ZZ>= ` ( M + 1 ) ) ) | 
						
							| 157 |  | eluzp1m1 |  |-  ( ( M e. ZZ /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( K - 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 158 | 155 156 157 | syl2an |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( K - 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 159 |  | eluzelz |  |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ ) | 
						
							| 160 | 4 159 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 161 | 160 | zcnd |  |-  ( ph -> N e. CC ) | 
						
							| 162 |  | ax-1cn |  |-  1 e. CC | 
						
							| 163 |  | pncan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 164 | 161 162 163 | sylancl |  |-  ( ph -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 165 |  | peano2zm |  |-  ( K e. ZZ -> ( K - 1 ) e. ZZ ) | 
						
							| 166 | 77 78 165 | 3syl |  |-  ( ph -> ( K - 1 ) e. ZZ ) | 
						
							| 167 |  | elfzuz3 |  |-  ( K e. ( M ... ( N + 1 ) ) -> ( N + 1 ) e. ( ZZ>= ` K ) ) | 
						
							| 168 | 77 167 | syl |  |-  ( ph -> ( N + 1 ) e. ( ZZ>= ` K ) ) | 
						
							| 169 | 112 | zcnd |  |-  ( ph -> K e. CC ) | 
						
							| 170 |  | npcan |  |-  ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 171 | 169 162 170 | sylancl |  |-  ( ph -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 172 | 171 | fveq2d |  |-  ( ph -> ( ZZ>= ` ( ( K - 1 ) + 1 ) ) = ( ZZ>= ` K ) ) | 
						
							| 173 | 168 172 | eleqtrrd |  |-  ( ph -> ( N + 1 ) e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) | 
						
							| 174 |  | eluzp1m1 |  |-  ( ( ( K - 1 ) e. ZZ /\ ( N + 1 ) e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) -> ( ( N + 1 ) - 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) | 
						
							| 175 | 166 173 174 | syl2anc |  |-  ( ph -> ( ( N + 1 ) - 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) | 
						
							| 176 | 164 175 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( K - 1 ) ) ) | 
						
							| 177 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( K - 1 ) ) -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) | 
						
							| 178 | 176 177 | syl |  |-  ( ph -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) | 
						
							| 179 | 178 | sselda |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( M ... N ) ) | 
						
							| 180 | 179 101 | syldan |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( J ` x ) e. ( M ... N ) ) | 
						
							| 181 | 180 | fvresd |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( G ` ( J ` x ) ) ) | 
						
							| 182 | 179 110 | syl |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) | 
						
							| 183 |  | elfzm11 |  |-  ( ( M e. ZZ /\ K e. ZZ ) -> ( x e. ( M ... ( K - 1 ) ) <-> ( x e. ZZ /\ M <_ x /\ x < K ) ) ) | 
						
							| 184 | 155 112 183 | syl2anc |  |-  ( ph -> ( x e. ( M ... ( K - 1 ) ) <-> ( x e. ZZ /\ M <_ x /\ x < K ) ) ) | 
						
							| 185 | 184 | biimpa |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( x e. ZZ /\ M <_ x /\ x < K ) ) | 
						
							| 186 | 185 | simp3d |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> x < K ) | 
						
							| 187 |  | iftrue |  |-  ( x < K -> if ( x < K , x , ( x + 1 ) ) = x ) | 
						
							| 188 | 187 | fveq2d |  |-  ( x < K -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` x ) ) | 
						
							| 189 | 186 188 | syl |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` x ) ) | 
						
							| 190 | 182 189 | eqtrd |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( J ` x ) = ( F ` x ) ) | 
						
							| 191 | 190 | fveq2d |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( G ` ( J ` x ) ) = ( G ` ( F ` x ) ) ) | 
						
							| 192 | 181 191 | eqtr2d |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( G ` ( F ` x ) ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) | 
						
							| 193 |  | peano2uz |  |-  ( N e. ( ZZ>= ` ( K - 1 ) ) -> ( N + 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) | 
						
							| 194 |  | fzss2 |  |-  ( ( N + 1 ) e. ( ZZ>= ` ( K - 1 ) ) -> ( M ... ( K - 1 ) ) C_ ( M ... ( N + 1 ) ) ) | 
						
							| 195 | 176 193 194 | 3syl |  |-  ( ph -> ( M ... ( K - 1 ) ) C_ ( M ... ( N + 1 ) ) ) | 
						
							| 196 | 195 | sselda |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( M ... ( N + 1 ) ) ) | 
						
							| 197 |  | fvco3 |  |-  ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) | 
						
							| 198 | 57 197 | sylan |  |-  ( ( ph /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) | 
						
							| 199 | 196 198 | syldan |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) | 
						
							| 200 | 179 128 | syldan |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) | 
						
							| 201 | 192 199 200 | 3eqtr4d |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) = ( ( ( G |` ( M ... N ) ) o. J ) ` x ) ) | 
						
							| 202 | 201 | adantlr |  |-  ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) = ( ( ( G |` ( M ... N ) ) o. J ) ` x ) ) | 
						
							| 203 | 158 202 | seqfveq |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) ) | 
						
							| 204 |  | fzp1ss |  |-  ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) | 
						
							| 205 | 4 154 204 | 3syl |  |-  ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) | 
						
							| 206 | 205 | sselda |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> K e. ( M ... N ) ) | 
						
							| 207 | 206 148 | syldan |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 208 | 203 207 | oveq12d |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) ) | 
						
							| 209 | 196 61 | syldan |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) | 
						
							| 210 | 209 | adantlr |  |-  ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) | 
						
							| 211 | 1 | adantlr |  |-  ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) | 
						
							| 212 | 158 210 211 | seqcl |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) e. S ) | 
						
							| 213 | 59 77 | ffvelcdmd |  |-  ( ph -> ( ( G o. F ) ` K ) e. C ) | 
						
							| 214 | 5 213 | sseldd |  |-  ( ph -> ( ( G o. F ) ` K ) e. S ) | 
						
							| 215 | 214 | adantr |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( G o. F ) ` K ) e. S ) | 
						
							| 216 | 94 | sselda |  |-  ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( ( K + 1 ) ... ( N + 1 ) ) ) -> x e. ( M ... ( N + 1 ) ) ) | 
						
							| 217 | 216 62 | syldan |  |-  ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( ( K + 1 ) ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) | 
						
							| 218 | 53 217 48 | seqcl |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) | 
						
							| 219 | 206 218 | syldan |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) | 
						
							| 220 | 212 215 219 | 3jca |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) e. S /\ ( ( G o. F ) ` K ) e. S /\ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) ) | 
						
							| 221 | 3 | caovassg |  |-  ( ( ph /\ ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) e. S /\ ( ( G o. F ) ` K ) e. S /\ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) ) -> ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) ) | 
						
							| 222 | 220 221 | syldan |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) ) | 
						
							| 223 | 7 5 | fssd |  |-  ( ph -> G : ( M ... ( N + 1 ) ) --> S ) | 
						
							| 224 |  | fssres |  |-  ( ( G : ( M ... ( N + 1 ) ) --> S /\ ( M ... N ) C_ ( M ... ( N + 1 ) ) ) -> ( G |` ( M ... N ) ) : ( M ... N ) --> S ) | 
						
							| 225 | 223 12 224 | sylancl |  |-  ( ph -> ( G |` ( M ... N ) ) : ( M ... N ) --> S ) | 
						
							| 226 |  | fco |  |-  ( ( ( G |` ( M ... N ) ) : ( M ... N ) --> S /\ J : ( M ... N ) --> ( M ... N ) ) -> ( ( G |` ( M ... N ) ) o. J ) : ( M ... N ) --> S ) | 
						
							| 227 | 225 21 226 | syl2anc |  |-  ( ph -> ( ( G |` ( M ... N ) ) o. J ) : ( M ... N ) --> S ) | 
						
							| 228 | 227 | ffvelcdmda |  |-  ( ( ph /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) | 
						
							| 229 | 179 228 | syldan |  |-  ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) | 
						
							| 230 | 229 | adantlr |  |-  ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) | 
						
							| 231 | 158 230 211 | seqcl |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) e. S ) | 
						
							| 232 |  | elfzuz3 |  |-  ( K e. ( ( M + 1 ) ... N ) -> N e. ( ZZ>= ` K ) ) | 
						
							| 233 | 232 | adantl |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> N e. ( ZZ>= ` K ) ) | 
						
							| 234 | 100 228 | syldan |  |-  ( ( ph /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) | 
						
							| 235 | 234 | adantlr |  |-  ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) | 
						
							| 236 | 233 235 211 | seqcl |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) e. S ) | 
						
							| 237 | 223 75 | ffvelcdmd |  |-  ( ph -> ( G ` ( N + 1 ) ) e. S ) | 
						
							| 238 | 237 | adantr |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( G ` ( N + 1 ) ) e. S ) | 
						
							| 239 | 231 236 238 | 3jca |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) e. S /\ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) e. S /\ ( G ` ( N + 1 ) ) e. S ) ) | 
						
							| 240 | 3 | caovassg |  |-  ( ( ph /\ ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) e. S /\ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) e. S /\ ( G ` ( N + 1 ) ) e. S ) ) -> ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) ) | 
						
							| 241 | 239 240 | syldan |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) ) | 
						
							| 242 | 208 222 241 | 3eqtr4d |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 243 |  | seqm1 |  |-  ( ( M e. ZZ /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) ) | 
						
							| 244 | 155 156 243 | syl2an |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) ) | 
						
							| 245 | 244 | oveq1d |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) | 
						
							| 246 | 3 | adantlr |  |-  ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) | 
						
							| 247 |  | elfzelz |  |-  ( K e. ( ( M + 1 ) ... N ) -> K e. ZZ ) | 
						
							| 248 | 247 | adantl |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> K e. ZZ ) | 
						
							| 249 | 248 | zcnd |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> K e. CC ) | 
						
							| 250 | 249 162 170 | sylancl |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 251 | 250 | fveq2d |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ZZ>= ` ( ( K - 1 ) + 1 ) ) = ( ZZ>= ` K ) ) | 
						
							| 252 | 233 251 | eleqtrrd |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) | 
						
							| 253 | 228 | adantlr |  |-  ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) | 
						
							| 254 | 211 246 252 158 253 | seqsplit |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) ) | 
						
							| 255 | 250 | seqeq1d |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) = seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ) | 
						
							| 256 | 255 | fveq1d |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) | 
						
							| 257 | 256 | oveq2d |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) ) | 
						
							| 258 | 254 257 | eqtrd |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) ) | 
						
							| 259 | 258 | oveq1d |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 260 | 242 245 259 | 3eqtr4d |  |-  ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 261 | 153 260 | jaodan |  |-  ( ( ph /\ ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 262 | 66 261 | syldan |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 263 | 63 262 | eqtrd |  |-  ( ( ph /\ K e. ( M ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 264 | 4 | adantr |  |-  ( ( ph /\ K = ( N + 1 ) ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 265 |  | seqp1 |  |-  ( N e. ( ZZ>= ` M ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` N ) .+ ( ( G o. F ) ` ( N + 1 ) ) ) ) | 
						
							| 266 | 264 265 | syl |  |-  ( ( ph /\ K = ( N + 1 ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` N ) .+ ( ( G o. F ) ` ( N + 1 ) ) ) ) | 
						
							| 267 | 110 | adantl |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) | 
						
							| 268 |  | elfzelz |  |-  ( x e. ( M ... N ) -> x e. ZZ ) | 
						
							| 269 | 268 | zred |  |-  ( x e. ( M ... N ) -> x e. RR ) | 
						
							| 270 | 269 | adantl |  |-  ( ( ph /\ x e. ( M ... N ) ) -> x e. RR ) | 
						
							| 271 | 160 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 272 | 271 | adantr |  |-  ( ( ph /\ x e. ( M ... N ) ) -> N e. RR ) | 
						
							| 273 |  | peano2re |  |-  ( N e. RR -> ( N + 1 ) e. RR ) | 
						
							| 274 | 272 273 | syl |  |-  ( ( ph /\ x e. ( M ... N ) ) -> ( N + 1 ) e. RR ) | 
						
							| 275 |  | elfzle2 |  |-  ( x e. ( M ... N ) -> x <_ N ) | 
						
							| 276 | 275 | adantl |  |-  ( ( ph /\ x e. ( M ... N ) ) -> x <_ N ) | 
						
							| 277 | 272 | ltp1d |  |-  ( ( ph /\ x e. ( M ... N ) ) -> N < ( N + 1 ) ) | 
						
							| 278 | 270 272 274 276 277 | lelttrd |  |-  ( ( ph /\ x e. ( M ... N ) ) -> x < ( N + 1 ) ) | 
						
							| 279 | 278 | adantlr |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x < ( N + 1 ) ) | 
						
							| 280 |  | simplr |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> K = ( N + 1 ) ) | 
						
							| 281 | 279 280 | breqtrrd |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x < K ) | 
						
							| 282 | 281 188 | syl |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` x ) ) | 
						
							| 283 | 267 282 | eqtrd |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( J ` x ) = ( F ` x ) ) | 
						
							| 284 | 283 | fveq2d |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( ( G |` ( M ... N ) ) ` ( F ` x ) ) ) | 
						
							| 285 | 269 | adantl |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x e. RR ) | 
						
							| 286 | 285 281 | gtned |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> K =/= x ) | 
						
							| 287 | 57 | ad2antrr |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) | 
						
							| 288 |  | fzelp1 |  |-  ( x e. ( M ... N ) -> x e. ( M ... ( N + 1 ) ) ) | 
						
							| 289 | 288 | adantl |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x e. ( M ... ( N + 1 ) ) ) | 
						
							| 290 | 287 289 | ffvelcdmd |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. ( M ... ( N + 1 ) ) ) | 
						
							| 291 | 4 | ad2antrr |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 292 |  | elfzp1 |  |-  ( N e. ( ZZ>= ` M ) -> ( ( F ` x ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` x ) e. ( M ... N ) \/ ( F ` x ) = ( N + 1 ) ) ) ) | 
						
							| 293 | 291 292 | syl |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` x ) e. ( M ... N ) \/ ( F ` x ) = ( N + 1 ) ) ) ) | 
						
							| 294 | 290 293 | mpbid |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) e. ( M ... N ) \/ ( F ` x ) = ( N + 1 ) ) ) | 
						
							| 295 | 294 | ord |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( -. ( F ` x ) e. ( M ... N ) -> ( F ` x ) = ( N + 1 ) ) ) | 
						
							| 296 | 6 | ad2antrr |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) | 
						
							| 297 |  | f1ocnvfv |  |-  ( ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( F ` x ) = ( N + 1 ) -> ( `' F ` ( N + 1 ) ) = x ) ) | 
						
							| 298 | 296 289 297 | syl2anc |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) = ( N + 1 ) -> ( `' F ` ( N + 1 ) ) = x ) ) | 
						
							| 299 | 9 | eqeq1i |  |-  ( K = x <-> ( `' F ` ( N + 1 ) ) = x ) | 
						
							| 300 | 298 299 | imbitrrdi |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) = ( N + 1 ) -> K = x ) ) | 
						
							| 301 | 295 300 | syld |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( -. ( F ` x ) e. ( M ... N ) -> K = x ) ) | 
						
							| 302 | 301 | necon1ad |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( K =/= x -> ( F ` x ) e. ( M ... N ) ) ) | 
						
							| 303 | 286 302 | mpd |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. ( M ... N ) ) | 
						
							| 304 | 303 | fvresd |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( F ` x ) ) = ( G ` ( F ` x ) ) ) | 
						
							| 305 | 284 304 | eqtr2d |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( G ` ( F ` x ) ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) | 
						
							| 306 | 57 288 197 | syl2an |  |-  ( ( ph /\ x e. ( M ... N ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) | 
						
							| 307 | 306 | adantlr |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) | 
						
							| 308 | 128 | adantlr |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) | 
						
							| 309 | 305 307 308 | 3eqtr4d |  |-  ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G o. F ) ` x ) = ( ( ( G |` ( M ... N ) ) o. J ) ` x ) ) | 
						
							| 310 | 264 309 | seqfveq |  |-  ( ( ph /\ K = ( N + 1 ) ) -> ( seq M ( .+ , ( G o. F ) ) ` N ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) | 
						
							| 311 |  | fvco3 |  |-  ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( F ` ( N + 1 ) ) ) ) | 
						
							| 312 | 57 75 311 | syl2anc |  |-  ( ph -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( F ` ( N + 1 ) ) ) ) | 
						
							| 313 | 312 | adantr |  |-  ( ( ph /\ K = ( N + 1 ) ) -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( F ` ( N + 1 ) ) ) ) | 
						
							| 314 |  | simpr |  |-  ( ( ph /\ K = ( N + 1 ) ) -> K = ( N + 1 ) ) | 
						
							| 315 | 9 314 | eqtr3id |  |-  ( ( ph /\ K = ( N + 1 ) ) -> ( `' F ` ( N + 1 ) ) = ( N + 1 ) ) | 
						
							| 316 | 315 | fveq2d |  |-  ( ( ph /\ K = ( N + 1 ) ) -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( F ` ( N + 1 ) ) ) | 
						
							| 317 | 142 | adantr |  |-  ( ( ph /\ K = ( N + 1 ) ) -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( N + 1 ) ) | 
						
							| 318 | 316 317 | eqtr3d |  |-  ( ( ph /\ K = ( N + 1 ) ) -> ( F ` ( N + 1 ) ) = ( N + 1 ) ) | 
						
							| 319 | 318 | fveq2d |  |-  ( ( ph /\ K = ( N + 1 ) ) -> ( G ` ( F ` ( N + 1 ) ) ) = ( G ` ( N + 1 ) ) ) | 
						
							| 320 | 313 319 | eqtrd |  |-  ( ( ph /\ K = ( N + 1 ) ) -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( N + 1 ) ) ) | 
						
							| 321 | 310 320 | oveq12d |  |-  ( ( ph /\ K = ( N + 1 ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` N ) .+ ( ( G o. F ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 322 | 266 321 | eqtrd |  |-  ( ( ph /\ K = ( N + 1 ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 323 |  | elfzp1 |  |-  ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... ( N + 1 ) ) <-> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) ) | 
						
							| 324 | 4 323 | syl |  |-  ( ph -> ( K e. ( M ... ( N + 1 ) ) <-> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) ) | 
						
							| 325 | 77 324 | mpbid |  |-  ( ph -> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) | 
						
							| 326 | 263 322 325 | mpjaodan |  |-  ( ph -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 327 |  | seqp1 |  |-  ( N e. ( ZZ>= ` M ) -> ( seq M ( .+ , G ) ` ( N + 1 ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 328 | 4 327 | syl |  |-  ( ph -> ( seq M ( .+ , G ) ` ( N + 1 ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) | 
						
							| 329 | 47 326 328 | 3eqtr4d |  |-  ( ph -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( seq M ( .+ , G ) ` ( N + 1 ) ) ) |