Step |
Hyp |
Ref |
Expression |
1 |
|
seqcl2.1 |
|- ( ph -> ( F ` M ) e. C ) |
2 |
|
seqcl2.2 |
|- ( ( ph /\ ( x e. C /\ y e. D ) ) -> ( x .+ y ) e. C ) |
3 |
|
seqf2.3 |
|- Z = ( ZZ>= ` M ) |
4 |
|
seqf2.4 |
|- ( ph -> M e. ZZ ) |
5 |
|
seqf2.5 |
|- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> ( F ` x ) e. D ) |
6 |
|
seqfn |
|- ( M e. ZZ -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
7 |
4 6
|
syl |
|- ( ph -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
8 |
1
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` M ) e. C ) |
9 |
2
|
adantlr |
|- ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ ( x e. C /\ y e. D ) ) -> ( x .+ y ) e. C ) |
10 |
|
simpr |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> k e. ( ZZ>= ` M ) ) |
11 |
|
elfzuz |
|- ( x e. ( ( M + 1 ) ... k ) -> x e. ( ZZ>= ` ( M + 1 ) ) ) |
12 |
11 5
|
sylan2 |
|- ( ( ph /\ x e. ( ( M + 1 ) ... k ) ) -> ( F ` x ) e. D ) |
13 |
12
|
adantlr |
|- ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ x e. ( ( M + 1 ) ... k ) ) -> ( F ` x ) e. D ) |
14 |
8 9 10 13
|
seqcl2 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( seq M ( .+ , F ) ` k ) e. C ) |
15 |
14
|
ralrimiva |
|- ( ph -> A. k e. ( ZZ>= ` M ) ( seq M ( .+ , F ) ` k ) e. C ) |
16 |
|
ffnfv |
|- ( seq M ( .+ , F ) : ( ZZ>= ` M ) --> C <-> ( seq M ( .+ , F ) Fn ( ZZ>= ` M ) /\ A. k e. ( ZZ>= ` M ) ( seq M ( .+ , F ) ` k ) e. C ) ) |
17 |
7 15 16
|
sylanbrc |
|- ( ph -> seq M ( .+ , F ) : ( ZZ>= ` M ) --> C ) |
18 |
3
|
feq2i |
|- ( seq M ( .+ , F ) : Z --> C <-> seq M ( .+ , F ) : ( ZZ>= ` M ) --> C ) |
19 |
17 18
|
sylibr |
|- ( ph -> seq M ( .+ , F ) : Z --> C ) |