| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqfveq2.1 |
|- ( ph -> K e. ( ZZ>= ` M ) ) |
| 2 |
|
seqfveq2.2 |
|- ( ph -> ( seq M ( .+ , F ) ` K ) = ( G ` K ) ) |
| 3 |
|
seqfeq2.4 |
|- ( ( ph /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> ( F ` k ) = ( G ` k ) ) |
| 4 |
|
eluzel2 |
|- ( K e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 5 |
|
seqfn |
|- ( M e. ZZ -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
| 6 |
1 4 5
|
3syl |
|- ( ph -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
| 7 |
|
uzss |
|- ( K e. ( ZZ>= ` M ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` M ) ) |
| 8 |
1 7
|
syl |
|- ( ph -> ( ZZ>= ` K ) C_ ( ZZ>= ` M ) ) |
| 9 |
|
fnssres |
|- ( ( seq M ( .+ , F ) Fn ( ZZ>= ` M ) /\ ( ZZ>= ` K ) C_ ( ZZ>= ` M ) ) -> ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) Fn ( ZZ>= ` K ) ) |
| 10 |
6 8 9
|
syl2anc |
|- ( ph -> ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) Fn ( ZZ>= ` K ) ) |
| 11 |
|
eluzelz |
|- ( K e. ( ZZ>= ` M ) -> K e. ZZ ) |
| 12 |
|
seqfn |
|- ( K e. ZZ -> seq K ( .+ , G ) Fn ( ZZ>= ` K ) ) |
| 13 |
1 11 12
|
3syl |
|- ( ph -> seq K ( .+ , G ) Fn ( ZZ>= ` K ) ) |
| 14 |
|
fvres |
|- ( x e. ( ZZ>= ` K ) -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) ` x ) = ( seq M ( .+ , F ) ` x ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) ` x ) = ( seq M ( .+ , F ) ` x ) ) |
| 16 |
1
|
adantr |
|- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> K e. ( ZZ>= ` M ) ) |
| 17 |
2
|
adantr |
|- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> ( seq M ( .+ , F ) ` K ) = ( G ` K ) ) |
| 18 |
|
simpr |
|- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> x e. ( ZZ>= ` K ) ) |
| 19 |
|
elfzuz |
|- ( k e. ( ( K + 1 ) ... x ) -> k e. ( ZZ>= ` ( K + 1 ) ) ) |
| 20 |
19 3
|
sylan2 |
|- ( ( ph /\ k e. ( ( K + 1 ) ... x ) ) -> ( F ` k ) = ( G ` k ) ) |
| 21 |
20
|
adantlr |
|- ( ( ( ph /\ x e. ( ZZ>= ` K ) ) /\ k e. ( ( K + 1 ) ... x ) ) -> ( F ` k ) = ( G ` k ) ) |
| 22 |
16 17 18 21
|
seqfveq2 |
|- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) ) |
| 23 |
15 22
|
eqtrd |
|- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) ` x ) = ( seq K ( .+ , G ) ` x ) ) |
| 24 |
10 13 23
|
eqfnfvd |
|- ( ph -> ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) = seq K ( .+ , G ) ) |