| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqfeq4.m |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
seqfeq4.f |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
| 3 |
|
seqfeq4.cl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 4 |
|
seqfeq4.id |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) = ( x Q y ) ) |
| 5 |
|
fvex |
|- ( seq M ( .+ , F ) ` N ) e. _V |
| 6 |
|
fvi |
|- ( ( seq M ( .+ , F ) ` N ) e. _V -> ( _I ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( .+ , F ) ` N ) ) |
| 7 |
5 6
|
ax-mp |
|- ( _I ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( .+ , F ) ` N ) |
| 8 |
|
ovex |
|- ( x .+ y ) e. _V |
| 9 |
|
fvi |
|- ( ( x .+ y ) e. _V -> ( _I ` ( x .+ y ) ) = ( x .+ y ) ) |
| 10 |
8 9
|
ax-mp |
|- ( _I ` ( x .+ y ) ) = ( x .+ y ) |
| 11 |
|
fvi |
|- ( x e. _V -> ( _I ` x ) = x ) |
| 12 |
11
|
elv |
|- ( _I ` x ) = x |
| 13 |
|
fvi |
|- ( y e. _V -> ( _I ` y ) = y ) |
| 14 |
13
|
elv |
|- ( _I ` y ) = y |
| 15 |
12 14
|
oveq12i |
|- ( ( _I ` x ) Q ( _I ` y ) ) = ( x Q y ) |
| 16 |
4 10 15
|
3eqtr4g |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( _I ` ( x .+ y ) ) = ( ( _I ` x ) Q ( _I ` y ) ) ) |
| 17 |
|
fvex |
|- ( F ` x ) e. _V |
| 18 |
|
fvi |
|- ( ( F ` x ) e. _V -> ( _I ` ( F ` x ) ) = ( F ` x ) ) |
| 19 |
17 18
|
mp1i |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( _I ` ( F ` x ) ) = ( F ` x ) ) |
| 20 |
3 2 1 16 19
|
seqhomo |
|- ( ph -> ( _I ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , F ) ` N ) ) |
| 21 |
7 20
|
eqtr3id |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq M ( Q , F ) ` N ) ) |