Step |
Hyp |
Ref |
Expression |
1 |
|
seqfveq.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
2 |
|
seqfveq.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = ( G ` k ) ) |
3 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
4 |
1 3
|
syl |
|- ( ph -> M e. ZZ ) |
5 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
6 |
4 5
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
7 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
8 |
4 7
|
syl |
|- ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
9 |
|
fveq2 |
|- ( k = M -> ( F ` k ) = ( F ` M ) ) |
10 |
|
fveq2 |
|- ( k = M -> ( G ` k ) = ( G ` M ) ) |
11 |
9 10
|
eqeq12d |
|- ( k = M -> ( ( F ` k ) = ( G ` k ) <-> ( F ` M ) = ( G ` M ) ) ) |
12 |
2
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) ( F ` k ) = ( G ` k ) ) |
13 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
14 |
1 13
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
15 |
11 12 14
|
rspcdva |
|- ( ph -> ( F ` M ) = ( G ` M ) ) |
16 |
8 15
|
eqtrd |
|- ( ph -> ( seq M ( .+ , F ) ` M ) = ( G ` M ) ) |
17 |
|
fzp1ss |
|- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
18 |
4 17
|
syl |
|- ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
19 |
18
|
sselda |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> k e. ( M ... N ) ) |
20 |
19 2
|
syldan |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> ( F ` k ) = ( G ` k ) ) |
21 |
6 16 1 20
|
seqfveq2 |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |