Step |
Hyp |
Ref |
Expression |
1 |
|
seqfveq2.1 |
|- ( ph -> K e. ( ZZ>= ` M ) ) |
2 |
|
seqfveq2.2 |
|- ( ph -> ( seq M ( .+ , F ) ` K ) = ( G ` K ) ) |
3 |
|
seqfveq2.3 |
|- ( ph -> N e. ( ZZ>= ` K ) ) |
4 |
|
seqfveq2.4 |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( F ` k ) = ( G ` k ) ) |
5 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` K ) -> N e. ( K ... N ) ) |
6 |
3 5
|
syl |
|- ( ph -> N e. ( K ... N ) ) |
7 |
|
eleq1 |
|- ( x = K -> ( x e. ( K ... N ) <-> K e. ( K ... N ) ) ) |
8 |
|
fveq2 |
|- ( x = K -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` K ) ) |
9 |
|
fveq2 |
|- ( x = K -> ( seq K ( .+ , G ) ` x ) = ( seq K ( .+ , G ) ` K ) ) |
10 |
8 9
|
eqeq12d |
|- ( x = K -> ( ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) <-> ( seq M ( .+ , F ) ` K ) = ( seq K ( .+ , G ) ` K ) ) ) |
11 |
7 10
|
imbi12d |
|- ( x = K -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) ) <-> ( K e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq K ( .+ , G ) ` K ) ) ) ) |
12 |
11
|
imbi2d |
|- ( x = K -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) ) ) <-> ( ph -> ( K e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq K ( .+ , G ) ` K ) ) ) ) ) |
13 |
|
eleq1 |
|- ( x = n -> ( x e. ( K ... N ) <-> n e. ( K ... N ) ) ) |
14 |
|
fveq2 |
|- ( x = n -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` n ) ) |
15 |
|
fveq2 |
|- ( x = n -> ( seq K ( .+ , G ) ` x ) = ( seq K ( .+ , G ) ` n ) ) |
16 |
14 15
|
eqeq12d |
|- ( x = n -> ( ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) <-> ( seq M ( .+ , F ) ` n ) = ( seq K ( .+ , G ) ` n ) ) ) |
17 |
13 16
|
imbi12d |
|- ( x = n -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) ) <-> ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq K ( .+ , G ) ` n ) ) ) ) |
18 |
17
|
imbi2d |
|- ( x = n -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) ) ) <-> ( ph -> ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq K ( .+ , G ) ` n ) ) ) ) ) |
19 |
|
eleq1 |
|- ( x = ( n + 1 ) -> ( x e. ( K ... N ) <-> ( n + 1 ) e. ( K ... N ) ) ) |
20 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) |
21 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq K ( .+ , G ) ` x ) = ( seq K ( .+ , G ) ` ( n + 1 ) ) ) |
22 |
20 21
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) <-> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq K ( .+ , G ) ` ( n + 1 ) ) ) ) |
23 |
19 22
|
imbi12d |
|- ( x = ( n + 1 ) -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) ) <-> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq K ( .+ , G ) ` ( n + 1 ) ) ) ) ) |
24 |
23
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq K ( .+ , G ) ` ( n + 1 ) ) ) ) ) ) |
25 |
|
eleq1 |
|- ( x = N -> ( x e. ( K ... N ) <-> N e. ( K ... N ) ) ) |
26 |
|
fveq2 |
|- ( x = N -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` N ) ) |
27 |
|
fveq2 |
|- ( x = N -> ( seq K ( .+ , G ) ` x ) = ( seq K ( .+ , G ) ` N ) ) |
28 |
26 27
|
eqeq12d |
|- ( x = N -> ( ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) <-> ( seq M ( .+ , F ) ` N ) = ( seq K ( .+ , G ) ` N ) ) ) |
29 |
25 28
|
imbi12d |
|- ( x = N -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) ) <-> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq K ( .+ , G ) ` N ) ) ) ) |
30 |
29
|
imbi2d |
|- ( x = N -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) ) ) <-> ( ph -> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq K ( .+ , G ) ` N ) ) ) ) ) |
31 |
|
eluzelz |
|- ( K e. ( ZZ>= ` M ) -> K e. ZZ ) |
32 |
|
seq1 |
|- ( K e. ZZ -> ( seq K ( .+ , G ) ` K ) = ( G ` K ) ) |
33 |
1 31 32
|
3syl |
|- ( ph -> ( seq K ( .+ , G ) ` K ) = ( G ` K ) ) |
34 |
2 33
|
eqtr4d |
|- ( ph -> ( seq M ( .+ , F ) ` K ) = ( seq K ( .+ , G ) ` K ) ) |
35 |
34
|
a1d |
|- ( ph -> ( K e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq K ( .+ , G ) ` K ) ) ) |
36 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) -> n e. ( K ... N ) ) |
37 |
36
|
adantl |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> n e. ( K ... N ) ) |
38 |
37
|
expr |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ( n + 1 ) e. ( K ... N ) -> n e. ( K ... N ) ) ) |
39 |
38
|
imim1d |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq K ( .+ , G ) ` n ) ) -> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq K ( .+ , G ) ` n ) ) ) ) |
40 |
|
oveq1 |
|- ( ( seq M ( .+ , F ) ` n ) = ( seq K ( .+ , G ) ` n ) -> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq K ( .+ , G ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
41 |
|
simpl |
|- ( ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) -> n e. ( ZZ>= ` K ) ) |
42 |
|
uztrn |
|- ( ( n e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` M ) ) -> n e. ( ZZ>= ` M ) ) |
43 |
41 1 42
|
syl2anr |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> n e. ( ZZ>= ` M ) ) |
44 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
45 |
43 44
|
syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
46 |
|
seqp1 |
|- ( n e. ( ZZ>= ` K ) -> ( seq K ( .+ , G ) ` ( n + 1 ) ) = ( ( seq K ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) |
47 |
46
|
ad2antrl |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( seq K ( .+ , G ) ` ( n + 1 ) ) = ( ( seq K ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) |
48 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
49 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( G ` k ) = ( G ` ( n + 1 ) ) ) |
50 |
48 49
|
eqeq12d |
|- ( k = ( n + 1 ) -> ( ( F ` k ) = ( G ` k ) <-> ( F ` ( n + 1 ) ) = ( G ` ( n + 1 ) ) ) ) |
51 |
4
|
ralrimiva |
|- ( ph -> A. k e. ( ( K + 1 ) ... N ) ( F ` k ) = ( G ` k ) ) |
52 |
51
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> A. k e. ( ( K + 1 ) ... N ) ( F ` k ) = ( G ` k ) ) |
53 |
|
eluzp1p1 |
|- ( n e. ( ZZ>= ` K ) -> ( n + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
54 |
53
|
ad2antrl |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( n + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
55 |
|
elfzuz3 |
|- ( ( n + 1 ) e. ( K ... N ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
56 |
55
|
ad2antll |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
57 |
|
elfzuzb |
|- ( ( n + 1 ) e. ( ( K + 1 ) ... N ) <-> ( ( n + 1 ) e. ( ZZ>= ` ( K + 1 ) ) /\ N e. ( ZZ>= ` ( n + 1 ) ) ) ) |
58 |
54 56 57
|
sylanbrc |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( n + 1 ) e. ( ( K + 1 ) ... N ) ) |
59 |
50 52 58
|
rspcdva |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( F ` ( n + 1 ) ) = ( G ` ( n + 1 ) ) ) |
60 |
59
|
oveq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( ( seq K ( .+ , G ) ` n ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq K ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) |
61 |
47 60
|
eqtr4d |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( seq K ( .+ , G ) ` ( n + 1 ) ) = ( ( seq K ( .+ , G ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
62 |
45 61
|
eqeq12d |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq K ( .+ , G ) ` ( n + 1 ) ) <-> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq K ( .+ , G ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
63 |
40 62
|
syl5ibr |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( ( seq M ( .+ , F ) ` n ) = ( seq K ( .+ , G ) ` n ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq K ( .+ , G ) ` ( n + 1 ) ) ) ) |
64 |
39 63
|
animpimp2impd |
|- ( n e. ( ZZ>= ` K ) -> ( ( ph -> ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq K ( .+ , G ) ` n ) ) ) -> ( ph -> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq K ( .+ , G ) ` ( n + 1 ) ) ) ) ) ) |
65 |
12 18 24 30 35 64
|
uzind4i |
|- ( N e. ( ZZ>= ` K ) -> ( ph -> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq K ( .+ , G ) ` N ) ) ) ) |
66 |
3 65
|
mpcom |
|- ( ph -> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq K ( .+ , G ) ` N ) ) ) |
67 |
6 66
|
mpd |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq K ( .+ , G ) ` N ) ) |