| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqhomo.1 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 2 |
|
seqhomo.2 |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
| 3 |
|
seqhomo.3 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 4 |
|
seqhomo.4 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) ) |
| 5 |
|
seqhomo.5 |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( H ` ( F ` x ) ) = ( G ` x ) ) |
| 6 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
| 7 |
3 6
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
| 8 |
|
eleq1 |
|- ( x = M -> ( x e. ( M ... N ) <-> M e. ( M ... N ) ) ) |
| 9 |
|
2fveq3 |
|- ( x = M -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( H ` ( seq M ( .+ , F ) ` M ) ) ) |
| 10 |
|
fveq2 |
|- ( x = M -> ( seq M ( Q , G ) ` x ) = ( seq M ( Q , G ) ` M ) ) |
| 11 |
9 10
|
eqeq12d |
|- ( x = M -> ( ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) <-> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( seq M ( Q , G ) ` M ) ) ) |
| 12 |
8 11
|
imbi12d |
|- ( x = M -> ( ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) <-> ( M e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( seq M ( Q , G ) ` M ) ) ) ) |
| 13 |
12
|
imbi2d |
|- ( x = M -> ( ( ph -> ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) ) <-> ( ph -> ( M e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( seq M ( Q , G ) ` M ) ) ) ) ) |
| 14 |
|
eleq1 |
|- ( x = n -> ( x e. ( M ... N ) <-> n e. ( M ... N ) ) ) |
| 15 |
|
2fveq3 |
|- ( x = n -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( H ` ( seq M ( .+ , F ) ` n ) ) ) |
| 16 |
|
fveq2 |
|- ( x = n -> ( seq M ( Q , G ) ` x ) = ( seq M ( Q , G ) ` n ) ) |
| 17 |
15 16
|
eqeq12d |
|- ( x = n -> ( ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) <-> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) ) |
| 18 |
14 17
|
imbi12d |
|- ( x = n -> ( ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) <-> ( n e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) ) ) |
| 19 |
18
|
imbi2d |
|- ( x = n -> ( ( ph -> ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) ) <-> ( ph -> ( n e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) ) ) ) |
| 20 |
|
eleq1 |
|- ( x = ( n + 1 ) -> ( x e. ( M ... N ) <-> ( n + 1 ) e. ( M ... N ) ) ) |
| 21 |
|
2fveq3 |
|- ( x = ( n + 1 ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) |
| 22 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq M ( Q , G ) ` x ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) |
| 23 |
21 22
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) <-> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) ) |
| 24 |
20 23
|
imbi12d |
|- ( x = ( n + 1 ) -> ( ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) <-> ( ( n + 1 ) e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) ) ) |
| 25 |
24
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) ) ) ) |
| 26 |
|
eleq1 |
|- ( x = N -> ( x e. ( M ... N ) <-> N e. ( M ... N ) ) ) |
| 27 |
|
2fveq3 |
|- ( x = N -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( H ` ( seq M ( .+ , F ) ` N ) ) ) |
| 28 |
|
fveq2 |
|- ( x = N -> ( seq M ( Q , G ) ` x ) = ( seq M ( Q , G ) ` N ) ) |
| 29 |
27 28
|
eqeq12d |
|- ( x = N -> ( ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) <-> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) ) |
| 30 |
26 29
|
imbi12d |
|- ( x = N -> ( ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) <-> ( N e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) ) ) |
| 31 |
30
|
imbi2d |
|- ( x = N -> ( ( ph -> ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) ) <-> ( ph -> ( N e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) ) ) ) |
| 32 |
|
2fveq3 |
|- ( x = M -> ( H ` ( F ` x ) ) = ( H ` ( F ` M ) ) ) |
| 33 |
|
fveq2 |
|- ( x = M -> ( G ` x ) = ( G ` M ) ) |
| 34 |
32 33
|
eqeq12d |
|- ( x = M -> ( ( H ` ( F ` x ) ) = ( G ` x ) <-> ( H ` ( F ` M ) ) = ( G ` M ) ) ) |
| 35 |
5
|
ralrimiva |
|- ( ph -> A. x e. ( M ... N ) ( H ` ( F ` x ) ) = ( G ` x ) ) |
| 36 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
| 37 |
3 36
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
| 38 |
34 35 37
|
rspcdva |
|- ( ph -> ( H ` ( F ` M ) ) = ( G ` M ) ) |
| 39 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 40 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 41 |
3 39 40
|
3syl |
|- ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 42 |
41
|
fveq2d |
|- ( ph -> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( H ` ( F ` M ) ) ) |
| 43 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( Q , G ) ` M ) = ( G ` M ) ) |
| 44 |
3 39 43
|
3syl |
|- ( ph -> ( seq M ( Q , G ) ` M ) = ( G ` M ) ) |
| 45 |
38 42 44
|
3eqtr4d |
|- ( ph -> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( seq M ( Q , G ) ` M ) ) |
| 46 |
45
|
a1d |
|- ( ph -> ( M e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( seq M ( Q , G ) ` M ) ) ) |
| 47 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) -> n e. ( M ... N ) ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( M ... N ) ) |
| 49 |
48
|
expr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n + 1 ) e. ( M ... N ) -> n e. ( M ... N ) ) ) |
| 50 |
49
|
imim1d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) -> ( ( n + 1 ) e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) ) ) |
| 51 |
|
oveq1 |
|- ( ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) -> ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( G ` ( n + 1 ) ) ) = ( ( seq M ( Q , G ) ` n ) Q ( G ` ( n + 1 ) ) ) ) |
| 52 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 53 |
52
|
ad2antrl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 54 |
53
|
fveq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 55 |
4
|
ralrimivva |
|- ( ph -> A. x e. S A. y e. S ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. x e. S A. y e. S ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) ) |
| 57 |
|
simprl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( ZZ>= ` M ) ) |
| 58 |
|
elfzuz3 |
|- ( n e. ( M ... N ) -> N e. ( ZZ>= ` n ) ) |
| 59 |
|
fzss2 |
|- ( N e. ( ZZ>= ` n ) -> ( M ... n ) C_ ( M ... N ) ) |
| 60 |
48 58 59
|
3syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( M ... n ) C_ ( M ... N ) ) |
| 61 |
60
|
sselda |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) /\ x e. ( M ... n ) ) -> x e. ( M ... N ) ) |
| 62 |
2
|
adantlr |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
| 63 |
61 62
|
syldan |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) /\ x e. ( M ... n ) ) -> ( F ` x ) e. S ) |
| 64 |
1
|
adantlr |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 65 |
57 63 64
|
seqcl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq M ( .+ , F ) ` n ) e. S ) |
| 66 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( F ` x ) = ( F ` ( n + 1 ) ) ) |
| 67 |
66
|
eleq1d |
|- ( x = ( n + 1 ) -> ( ( F ` x ) e. S <-> ( F ` ( n + 1 ) ) e. S ) ) |
| 68 |
2
|
ralrimiva |
|- ( ph -> A. x e. ( M ... N ) ( F ` x ) e. S ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. x e. ( M ... N ) ( F ` x ) e. S ) |
| 70 |
|
simprr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( n + 1 ) e. ( M ... N ) ) |
| 71 |
67 69 70
|
rspcdva |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` ( n + 1 ) ) e. S ) |
| 72 |
|
fvoveq1 |
|- ( x = ( seq M ( .+ , F ) ` n ) -> ( H ` ( x .+ y ) ) = ( H ` ( ( seq M ( .+ , F ) ` n ) .+ y ) ) ) |
| 73 |
|
fveq2 |
|- ( x = ( seq M ( .+ , F ) ` n ) -> ( H ` x ) = ( H ` ( seq M ( .+ , F ) ` n ) ) ) |
| 74 |
73
|
oveq1d |
|- ( x = ( seq M ( .+ , F ) ` n ) -> ( ( H ` x ) Q ( H ` y ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` y ) ) ) |
| 75 |
72 74
|
eqeq12d |
|- ( x = ( seq M ( .+ , F ) ` n ) -> ( ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) <-> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ y ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` y ) ) ) ) |
| 76 |
|
oveq2 |
|- ( y = ( F ` ( n + 1 ) ) -> ( ( seq M ( .+ , F ) ` n ) .+ y ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 77 |
76
|
fveq2d |
|- ( y = ( F ` ( n + 1 ) ) -> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ y ) ) = ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 78 |
|
fveq2 |
|- ( y = ( F ` ( n + 1 ) ) -> ( H ` y ) = ( H ` ( F ` ( n + 1 ) ) ) ) |
| 79 |
78
|
oveq2d |
|- ( y = ( F ` ( n + 1 ) ) -> ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` y ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) ) |
| 80 |
77 79
|
eqeq12d |
|- ( y = ( F ` ( n + 1 ) ) -> ( ( H ` ( ( seq M ( .+ , F ) ` n ) .+ y ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` y ) ) <-> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) ) ) |
| 81 |
75 80
|
rspc2v |
|- ( ( ( seq M ( .+ , F ) ` n ) e. S /\ ( F ` ( n + 1 ) ) e. S ) -> ( A. x e. S A. y e. S ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) -> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) ) ) |
| 82 |
65 71 81
|
syl2anc |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( A. x e. S A. y e. S ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) -> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) ) ) |
| 83 |
56 82
|
mpd |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) ) |
| 84 |
|
2fveq3 |
|- ( x = ( n + 1 ) -> ( H ` ( F ` x ) ) = ( H ` ( F ` ( n + 1 ) ) ) ) |
| 85 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( G ` x ) = ( G ` ( n + 1 ) ) ) |
| 86 |
84 85
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( H ` ( F ` x ) ) = ( G ` x ) <-> ( H ` ( F ` ( n + 1 ) ) ) = ( G ` ( n + 1 ) ) ) ) |
| 87 |
35
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. x e. ( M ... N ) ( H ` ( F ` x ) ) = ( G ` x ) ) |
| 88 |
86 87 70
|
rspcdva |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( H ` ( F ` ( n + 1 ) ) ) = ( G ` ( n + 1 ) ) ) |
| 89 |
88
|
oveq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( G ` ( n + 1 ) ) ) ) |
| 90 |
54 83 89
|
3eqtrd |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( G ` ( n + 1 ) ) ) ) |
| 91 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( Q , G ) ` ( n + 1 ) ) = ( ( seq M ( Q , G ) ` n ) Q ( G ` ( n + 1 ) ) ) ) |
| 92 |
91
|
ad2antrl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq M ( Q , G ) ` ( n + 1 ) ) = ( ( seq M ( Q , G ) ` n ) Q ( G ` ( n + 1 ) ) ) ) |
| 93 |
90 92
|
eqeq12d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) <-> ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( G ` ( n + 1 ) ) ) = ( ( seq M ( Q , G ) ` n ) Q ( G ` ( n + 1 ) ) ) ) ) |
| 94 |
51 93
|
imbitrrid |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) ) |
| 95 |
50 94
|
animpimp2impd |
|- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( n e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) ) -> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) ) ) ) |
| 96 |
13 19 25 31 46 95
|
uzind4i |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( N e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) ) ) |
| 97 |
3 96
|
mpcom |
|- ( ph -> ( N e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) ) |
| 98 |
7 97
|
mpd |
|- ( ph -> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) |