| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqid.1 |
|- ( ( ph /\ x e. S ) -> ( Z .+ x ) = x ) |
| 2 |
|
seqid.2 |
|- ( ph -> Z e. S ) |
| 3 |
|
seqid.3 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 4 |
|
seqid.4 |
|- ( ph -> ( F ` N ) e. S ) |
| 5 |
|
seqid.5 |
|- ( ( ph /\ x e. ( M ... ( N - 1 ) ) ) -> ( F ` x ) = Z ) |
| 6 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 7 |
|
seq1 |
|- ( N e. ZZ -> ( seq N ( .+ , F ) ` N ) = ( F ` N ) ) |
| 8 |
3 6 7
|
3syl |
|- ( ph -> ( seq N ( .+ , F ) ` N ) = ( F ` N ) ) |
| 9 |
|
seqeq1 |
|- ( N = M -> seq N ( .+ , F ) = seq M ( .+ , F ) ) |
| 10 |
9
|
fveq1d |
|- ( N = M -> ( seq N ( .+ , F ) ` N ) = ( seq M ( .+ , F ) ` N ) ) |
| 11 |
10
|
eqeq1d |
|- ( N = M -> ( ( seq N ( .+ , F ) ` N ) = ( F ` N ) <-> ( seq M ( .+ , F ) ` N ) = ( F ` N ) ) ) |
| 12 |
8 11
|
syl5ibcom |
|- ( ph -> ( N = M -> ( seq M ( .+ , F ) ` N ) = ( F ` N ) ) ) |
| 13 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 14 |
3 13
|
syl |
|- ( ph -> M e. ZZ ) |
| 15 |
|
seqm1 |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` N ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` N ) ) ) |
| 16 |
14 15
|
sylan |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` N ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` N ) ) ) |
| 17 |
|
oveq2 |
|- ( x = Z -> ( Z .+ x ) = ( Z .+ Z ) ) |
| 18 |
|
id |
|- ( x = Z -> x = Z ) |
| 19 |
17 18
|
eqeq12d |
|- ( x = Z -> ( ( Z .+ x ) = x <-> ( Z .+ Z ) = Z ) ) |
| 20 |
1
|
ralrimiva |
|- ( ph -> A. x e. S ( Z .+ x ) = x ) |
| 21 |
19 20 2
|
rspcdva |
|- ( ph -> ( Z .+ Z ) = Z ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( Z .+ Z ) = Z ) |
| 23 |
|
eluzp1m1 |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 24 |
14 23
|
sylan |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 25 |
5
|
adantlr |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ x e. ( M ... ( N - 1 ) ) ) -> ( F ` x ) = Z ) |
| 26 |
22 24 25
|
seqid3 |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` ( N - 1 ) ) = Z ) |
| 27 |
26
|
oveq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` N ) ) = ( Z .+ ( F ` N ) ) ) |
| 28 |
|
oveq2 |
|- ( x = ( F ` N ) -> ( Z .+ x ) = ( Z .+ ( F ` N ) ) ) |
| 29 |
|
id |
|- ( x = ( F ` N ) -> x = ( F ` N ) ) |
| 30 |
28 29
|
eqeq12d |
|- ( x = ( F ` N ) -> ( ( Z .+ x ) = x <-> ( Z .+ ( F ` N ) ) = ( F ` N ) ) ) |
| 31 |
20
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> A. x e. S ( Z .+ x ) = x ) |
| 32 |
4
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( F ` N ) e. S ) |
| 33 |
30 31 32
|
rspcdva |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( Z .+ ( F ` N ) ) = ( F ` N ) ) |
| 34 |
16 27 33
|
3eqtrd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` N ) = ( F ` N ) ) |
| 35 |
34
|
ex |
|- ( ph -> ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( seq M ( .+ , F ) ` N ) = ( F ` N ) ) ) |
| 36 |
|
uzp1 |
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 37 |
3 36
|
syl |
|- ( ph -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 38 |
12 35 37
|
mpjaod |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( F ` N ) ) |
| 39 |
|
eqidd |
|- ( ( ph /\ x e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` x ) = ( F ` x ) ) |
| 40 |
3 38 39
|
seqfeq2 |
|- ( ph -> ( seq M ( .+ , F ) |` ( ZZ>= ` N ) ) = seq N ( .+ , F ) ) |