Step |
Hyp |
Ref |
Expression |
1 |
|
seqid2.1 |
|- ( ( ph /\ x e. S ) -> ( x .+ Z ) = x ) |
2 |
|
seqid2.2 |
|- ( ph -> K e. ( ZZ>= ` M ) ) |
3 |
|
seqid2.3 |
|- ( ph -> N e. ( ZZ>= ` K ) ) |
4 |
|
seqid2.4 |
|- ( ph -> ( seq M ( .+ , F ) ` K ) e. S ) |
5 |
|
seqid2.5 |
|- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> ( F ` x ) = Z ) |
6 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` K ) -> N e. ( K ... N ) ) |
7 |
3 6
|
syl |
|- ( ph -> N e. ( K ... N ) ) |
8 |
|
eleq1 |
|- ( x = K -> ( x e. ( K ... N ) <-> K e. ( K ... N ) ) ) |
9 |
|
fveq2 |
|- ( x = K -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` K ) ) |
10 |
9
|
eqeq2d |
|- ( x = K -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) <-> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) ) |
11 |
8 10
|
imbi12d |
|- ( x = K -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) <-> ( K e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) ) ) |
12 |
11
|
imbi2d |
|- ( x = K -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) ) <-> ( ph -> ( K e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) ) ) ) |
13 |
|
eleq1 |
|- ( x = n -> ( x e. ( K ... N ) <-> n e. ( K ... N ) ) ) |
14 |
|
fveq2 |
|- ( x = n -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` n ) ) |
15 |
14
|
eqeq2d |
|- ( x = n -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) <-> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) ) |
16 |
13 15
|
imbi12d |
|- ( x = n -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) <-> ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) ) ) |
17 |
16
|
imbi2d |
|- ( x = n -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) ) <-> ( ph -> ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) ) ) ) |
18 |
|
eleq1 |
|- ( x = ( n + 1 ) -> ( x e. ( K ... N ) <-> ( n + 1 ) e. ( K ... N ) ) ) |
19 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) |
20 |
19
|
eqeq2d |
|- ( x = ( n + 1 ) -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) <-> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) |
21 |
18 20
|
imbi12d |
|- ( x = ( n + 1 ) -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) <-> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) ) |
22 |
21
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) ) ) |
23 |
|
eleq1 |
|- ( x = N -> ( x e. ( K ... N ) <-> N e. ( K ... N ) ) ) |
24 |
|
fveq2 |
|- ( x = N -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` N ) ) |
25 |
24
|
eqeq2d |
|- ( x = N -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) <-> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) ) |
26 |
23 25
|
imbi12d |
|- ( x = N -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) <-> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) ) ) |
27 |
26
|
imbi2d |
|- ( x = N -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) ) <-> ( ph -> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) ) ) ) |
28 |
|
eqidd |
|- ( K e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) |
29 |
28
|
2a1i |
|- ( K e. ZZ -> ( ph -> ( K e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) ) ) |
30 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) -> n e. ( K ... N ) ) |
31 |
30
|
adantl |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> n e. ( K ... N ) ) |
32 |
31
|
expr |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ( n + 1 ) e. ( K ... N ) -> n e. ( K ... N ) ) ) |
33 |
32
|
imim1d |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) -> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) ) ) |
34 |
|
oveq1 |
|- ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) -> ( ( seq M ( .+ , F ) ` K ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
35 |
|
fveqeq2 |
|- ( x = ( n + 1 ) -> ( ( F ` x ) = Z <-> ( F ` ( n + 1 ) ) = Z ) ) |
36 |
5
|
ralrimiva |
|- ( ph -> A. x e. ( ( K + 1 ) ... N ) ( F ` x ) = Z ) |
37 |
36
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> A. x e. ( ( K + 1 ) ... N ) ( F ` x ) = Z ) |
38 |
|
eluzp1p1 |
|- ( n e. ( ZZ>= ` K ) -> ( n + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
39 |
38
|
ad2antrl |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( n + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
40 |
|
elfzuz3 |
|- ( ( n + 1 ) e. ( K ... N ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
41 |
40
|
ad2antll |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
42 |
|
elfzuzb |
|- ( ( n + 1 ) e. ( ( K + 1 ) ... N ) <-> ( ( n + 1 ) e. ( ZZ>= ` ( K + 1 ) ) /\ N e. ( ZZ>= ` ( n + 1 ) ) ) ) |
43 |
39 41 42
|
sylanbrc |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( n + 1 ) e. ( ( K + 1 ) ... N ) ) |
44 |
35 37 43
|
rspcdva |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( F ` ( n + 1 ) ) = Z ) |
45 |
44
|
oveq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( ( seq M ( .+ , F ) ` K ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq M ( .+ , F ) ` K ) .+ Z ) ) |
46 |
|
oveq1 |
|- ( x = ( seq M ( .+ , F ) ` K ) -> ( x .+ Z ) = ( ( seq M ( .+ , F ) ` K ) .+ Z ) ) |
47 |
|
id |
|- ( x = ( seq M ( .+ , F ) ` K ) -> x = ( seq M ( .+ , F ) ` K ) ) |
48 |
46 47
|
eqeq12d |
|- ( x = ( seq M ( .+ , F ) ` K ) -> ( ( x .+ Z ) = x <-> ( ( seq M ( .+ , F ) ` K ) .+ Z ) = ( seq M ( .+ , F ) ` K ) ) ) |
49 |
1
|
ralrimiva |
|- ( ph -> A. x e. S ( x .+ Z ) = x ) |
50 |
48 49 4
|
rspcdva |
|- ( ph -> ( ( seq M ( .+ , F ) ` K ) .+ Z ) = ( seq M ( .+ , F ) ` K ) ) |
51 |
50
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( ( seq M ( .+ , F ) ` K ) .+ Z ) = ( seq M ( .+ , F ) ` K ) ) |
52 |
45 51
|
eqtr2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( seq M ( .+ , F ) ` K ) = ( ( seq M ( .+ , F ) ` K ) .+ ( F ` ( n + 1 ) ) ) ) |
53 |
|
simprl |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> n e. ( ZZ>= ` K ) ) |
54 |
2
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> K e. ( ZZ>= ` M ) ) |
55 |
|
uztrn |
|- ( ( n e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` M ) ) -> n e. ( ZZ>= ` M ) ) |
56 |
53 54 55
|
syl2anc |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> n e. ( ZZ>= ` M ) ) |
57 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
58 |
56 57
|
syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
59 |
52 58
|
eqeq12d |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) <-> ( ( seq M ( .+ , F ) ` K ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
60 |
34 59
|
syl5ibr |
|- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) |
61 |
33 60
|
animpimp2impd |
|- ( n e. ( ZZ>= ` K ) -> ( ( ph -> ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) ) -> ( ph -> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) ) ) |
62 |
12 17 22 27 29 61
|
uzind4 |
|- ( N e. ( ZZ>= ` K ) -> ( ph -> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) ) ) |
63 |
3 62
|
mpcom |
|- ( ph -> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) ) |
64 |
7 63
|
mpd |
|- ( ph -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) |