Step |
Hyp |
Ref |
Expression |
1 |
|
seqid3.1 |
|- ( ph -> ( Z .+ Z ) = Z ) |
2 |
|
seqid3.2 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
3 |
|
seqid3.3 |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) = Z ) |
4 |
|
fvex |
|- ( F ` x ) e. _V |
5 |
4
|
elsn |
|- ( ( F ` x ) e. { Z } <-> ( F ` x ) = Z ) |
6 |
3 5
|
sylibr |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. { Z } ) |
7 |
|
ovex |
|- ( Z .+ Z ) e. _V |
8 |
7
|
elsn |
|- ( ( Z .+ Z ) e. { Z } <-> ( Z .+ Z ) = Z ) |
9 |
1 8
|
sylibr |
|- ( ph -> ( Z .+ Z ) e. { Z } ) |
10 |
|
elsni |
|- ( x e. { Z } -> x = Z ) |
11 |
|
elsni |
|- ( y e. { Z } -> y = Z ) |
12 |
10 11
|
oveqan12d |
|- ( ( x e. { Z } /\ y e. { Z } ) -> ( x .+ y ) = ( Z .+ Z ) ) |
13 |
12
|
eleq1d |
|- ( ( x e. { Z } /\ y e. { Z } ) -> ( ( x .+ y ) e. { Z } <-> ( Z .+ Z ) e. { Z } ) ) |
14 |
9 13
|
syl5ibrcom |
|- ( ph -> ( ( x e. { Z } /\ y e. { Z } ) -> ( x .+ y ) e. { Z } ) ) |
15 |
14
|
imp |
|- ( ( ph /\ ( x e. { Z } /\ y e. { Z } ) ) -> ( x .+ y ) e. { Z } ) |
16 |
2 6 15
|
seqcl |
|- ( ph -> ( seq M ( .+ , F ) ` N ) e. { Z } ) |
17 |
|
elsni |
|- ( ( seq M ( .+ , F ) ` N ) e. { Z } -> ( seq M ( .+ , F ) ` N ) = Z ) |
18 |
16 17
|
syl |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = Z ) |