Step |
Hyp |
Ref |
Expression |
1 |
|
eluzp1m1 |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
2 |
|
seqp1 |
|- ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( ( N - 1 ) + 1 ) ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` ( ( N - 1 ) + 1 ) ) ) ) |
3 |
1 2
|
syl |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` ( ( N - 1 ) + 1 ) ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` ( ( N - 1 ) + 1 ) ) ) ) |
4 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. CC ) |
5 |
|
ax-1cn |
|- 1 e. CC |
6 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
7 |
4 5 6
|
sylancl |
|- ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( ( N - 1 ) + 1 ) = N ) |
8 |
7
|
adantl |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
9 |
8
|
fveq2d |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` ( ( N - 1 ) + 1 ) ) = ( seq M ( .+ , F ) ` N ) ) |
10 |
8
|
fveq2d |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( F ` ( ( N - 1 ) + 1 ) ) = ( F ` N ) ) |
11 |
10
|
oveq2d |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` ( ( N - 1 ) + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` N ) ) ) |
12 |
3 9 11
|
3eqtr3d |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` N ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` N ) ) ) |