Step |
Hyp |
Ref |
Expression |
1 |
|
seqom.a |
|- G = seqom ( F , I ) |
2 |
|
df-seqom |
|- seqom ( F , I ) = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) |
3 |
1 2
|
eqtri |
|- G = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) |
4 |
3
|
fveq1i |
|- ( G ` (/) ) = ( ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) ` (/) ) |
5 |
|
seqomlem0 |
|- rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) = rec ( ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) , <. (/) , ( _I ` I ) >. ) |
6 |
5
|
seqomlem3 |
|- ( ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) ` (/) ) = ( _I ` I ) |
7 |
4 6
|
eqtri |
|- ( G ` (/) ) = ( _I ` I ) |
8 |
|
fvi |
|- ( I e. V -> ( _I ` I ) = I ) |
9 |
7 8
|
eqtrid |
|- ( I e. V -> ( G ` (/) ) = I ) |