Description: Lemma for seqom . Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqomlem0 | |- rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) = rec ( ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) , <. (/) , ( _I ` I ) >. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | suceq | |- ( a = c -> suc a = suc c ) | |
| 2 | oveq1 | |- ( a = c -> ( a F b ) = ( c F b ) ) | |
| 3 | 1 2 | opeq12d | |- ( a = c -> <. suc a , ( a F b ) >. = <. suc c , ( c F b ) >. ) | 
| 4 | oveq2 | |- ( b = d -> ( c F b ) = ( c F d ) ) | |
| 5 | 4 | opeq2d | |- ( b = d -> <. suc c , ( c F b ) >. = <. suc c , ( c F d ) >. ) | 
| 6 | 3 5 | cbvmpov | |- ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) = ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) | 
| 7 | rdgeq1 | |- ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) = ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) -> rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) = rec ( ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) , <. (/) , ( _I ` I ) >. ) ) | |
| 8 | 6 7 | ax-mp | |- rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) = rec ( ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) , <. (/) , ( _I ` I ) >. ) |