Step |
Hyp |
Ref |
Expression |
1 |
|
seqomlem.a |
|- Q = rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |
2 |
|
peano1 |
|- (/) e. _om |
3 |
|
fvres |
|- ( (/) e. _om -> ( ( Q |` _om ) ` (/) ) = ( Q ` (/) ) ) |
4 |
2 3
|
ax-mp |
|- ( ( Q |` _om ) ` (/) ) = ( Q ` (/) ) |
5 |
1
|
fveq1i |
|- ( Q ` (/) ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` (/) ) |
6 |
|
opex |
|- <. (/) , ( _I ` I ) >. e. _V |
7 |
6
|
rdg0 |
|- ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` (/) ) = <. (/) , ( _I ` I ) >. |
8 |
4 5 7
|
3eqtri |
|- ( ( Q |` _om ) ` (/) ) = <. (/) , ( _I ` I ) >. |
9 |
|
frfnom |
|- ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) Fn _om |
10 |
1
|
reseq1i |
|- ( Q |` _om ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) |
11 |
10
|
fneq1i |
|- ( ( Q |` _om ) Fn _om <-> ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) Fn _om ) |
12 |
9 11
|
mpbir |
|- ( Q |` _om ) Fn _om |
13 |
|
fnfvelrn |
|- ( ( ( Q |` _om ) Fn _om /\ (/) e. _om ) -> ( ( Q |` _om ) ` (/) ) e. ran ( Q |` _om ) ) |
14 |
12 2 13
|
mp2an |
|- ( ( Q |` _om ) ` (/) ) e. ran ( Q |` _om ) |
15 |
8 14
|
eqeltrri |
|- <. (/) , ( _I ` I ) >. e. ran ( Q |` _om ) |
16 |
|
df-ima |
|- ( Q " _om ) = ran ( Q |` _om ) |
17 |
15 16
|
eleqtrri |
|- <. (/) , ( _I ` I ) >. e. ( Q " _om ) |
18 |
|
df-br |
|- ( (/) ( Q " _om ) ( _I ` I ) <-> <. (/) , ( _I ` I ) >. e. ( Q " _om ) ) |
19 |
17 18
|
mpbir |
|- (/) ( Q " _om ) ( _I ` I ) |
20 |
1
|
seqomlem2 |
|- ( Q " _om ) Fn _om |
21 |
|
fnbrfvb |
|- ( ( ( Q " _om ) Fn _om /\ (/) e. _om ) -> ( ( ( Q " _om ) ` (/) ) = ( _I ` I ) <-> (/) ( Q " _om ) ( _I ` I ) ) ) |
22 |
20 2 21
|
mp2an |
|- ( ( ( Q " _om ) ` (/) ) = ( _I ` I ) <-> (/) ( Q " _om ) ( _I ` I ) ) |
23 |
19 22
|
mpbir |
|- ( ( Q " _om ) ` (/) ) = ( _I ` I ) |