| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqomlem.a |  |-  Q = rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) | 
						
							| 2 |  | peano1 |  |-  (/) e. _om | 
						
							| 3 |  | fvres |  |-  ( (/) e. _om -> ( ( Q |` _om ) ` (/) ) = ( Q ` (/) ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( ( Q |` _om ) ` (/) ) = ( Q ` (/) ) | 
						
							| 5 | 1 | fveq1i |  |-  ( Q ` (/) ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` (/) ) | 
						
							| 6 |  | opex |  |-  <. (/) , ( _I ` I ) >. e. _V | 
						
							| 7 | 6 | rdg0 |  |-  ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` (/) ) = <. (/) , ( _I ` I ) >. | 
						
							| 8 | 4 5 7 | 3eqtri |  |-  ( ( Q |` _om ) ` (/) ) = <. (/) , ( _I ` I ) >. | 
						
							| 9 |  | frfnom |  |-  ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) Fn _om | 
						
							| 10 | 1 | reseq1i |  |-  ( Q |` _om ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) | 
						
							| 11 | 10 | fneq1i |  |-  ( ( Q |` _om ) Fn _om <-> ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) Fn _om ) | 
						
							| 12 | 9 11 | mpbir |  |-  ( Q |` _om ) Fn _om | 
						
							| 13 |  | fnfvelrn |  |-  ( ( ( Q |` _om ) Fn _om /\ (/) e. _om ) -> ( ( Q |` _om ) ` (/) ) e. ran ( Q |` _om ) ) | 
						
							| 14 | 12 2 13 | mp2an |  |-  ( ( Q |` _om ) ` (/) ) e. ran ( Q |` _om ) | 
						
							| 15 | 8 14 | eqeltrri |  |-  <. (/) , ( _I ` I ) >. e. ran ( Q |` _om ) | 
						
							| 16 |  | df-ima |  |-  ( Q " _om ) = ran ( Q |` _om ) | 
						
							| 17 | 15 16 | eleqtrri |  |-  <. (/) , ( _I ` I ) >. e. ( Q " _om ) | 
						
							| 18 |  | df-br |  |-  ( (/) ( Q " _om ) ( _I ` I ) <-> <. (/) , ( _I ` I ) >. e. ( Q " _om ) ) | 
						
							| 19 | 17 18 | mpbir |  |-  (/) ( Q " _om ) ( _I ` I ) | 
						
							| 20 | 1 | seqomlem2 |  |-  ( Q " _om ) Fn _om | 
						
							| 21 |  | fnbrfvb |  |-  ( ( ( Q " _om ) Fn _om /\ (/) e. _om ) -> ( ( ( Q " _om ) ` (/) ) = ( _I ` I ) <-> (/) ( Q " _om ) ( _I ` I ) ) ) | 
						
							| 22 | 20 2 21 | mp2an |  |-  ( ( ( Q " _om ) ` (/) ) = ( _I ` I ) <-> (/) ( Q " _om ) ( _I ` I ) ) | 
						
							| 23 | 19 22 | mpbir |  |-  ( ( Q " _om ) ` (/) ) = ( _I ` I ) |