| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqomlem.a |  |-  Q = rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) | 
						
							| 2 |  | peano2 |  |-  ( A e. _om -> suc A e. _om ) | 
						
							| 3 | 2 | fvresd |  |-  ( A e. _om -> ( ( Q |` _om ) ` suc A ) = ( Q ` suc A ) ) | 
						
							| 4 |  | frsuc |  |-  ( A e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc A ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` A ) ) ) | 
						
							| 5 | 2 | fvresd |  |-  ( A e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc A ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` suc A ) ) | 
						
							| 6 | 1 | fveq1i |  |-  ( Q ` suc A ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` suc A ) | 
						
							| 7 | 5 6 | eqtr4di |  |-  ( A e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc A ) = ( Q ` suc A ) ) | 
						
							| 8 |  | fvres |  |-  ( A e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` A ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` A ) ) | 
						
							| 9 | 1 | fveq1i |  |-  ( Q ` A ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` A ) | 
						
							| 10 | 8 9 | eqtr4di |  |-  ( A e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` A ) = ( Q ` A ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( A e. _om -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` A ) ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` A ) ) ) | 
						
							| 12 | 4 7 11 | 3eqtr3d |  |-  ( A e. _om -> ( Q ` suc A ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` A ) ) ) | 
						
							| 13 | 1 | seqomlem1 |  |-  ( A e. _om -> ( Q ` A ) = <. A , ( 2nd ` ( Q ` A ) ) >. ) | 
						
							| 14 | 13 | fveq2d |  |-  ( A e. _om -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` A ) ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. A , ( 2nd ` ( Q ` A ) ) >. ) ) | 
						
							| 15 |  | df-ov |  |-  ( A ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` A ) ) ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. A , ( 2nd ` ( Q ` A ) ) >. ) | 
						
							| 16 |  | fvex |  |-  ( 2nd ` ( Q ` A ) ) e. _V | 
						
							| 17 |  | suceq |  |-  ( i = A -> suc i = suc A ) | 
						
							| 18 |  | oveq1 |  |-  ( i = A -> ( i F v ) = ( A F v ) ) | 
						
							| 19 | 17 18 | opeq12d |  |-  ( i = A -> <. suc i , ( i F v ) >. = <. suc A , ( A F v ) >. ) | 
						
							| 20 |  | oveq2 |  |-  ( v = ( 2nd ` ( Q ` A ) ) -> ( A F v ) = ( A F ( 2nd ` ( Q ` A ) ) ) ) | 
						
							| 21 | 20 | opeq2d |  |-  ( v = ( 2nd ` ( Q ` A ) ) -> <. suc A , ( A F v ) >. = <. suc A , ( A F ( 2nd ` ( Q ` A ) ) ) >. ) | 
						
							| 22 |  | eqid |  |-  ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) = ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) | 
						
							| 23 |  | opex |  |-  <. suc A , ( A F ( 2nd ` ( Q ` A ) ) ) >. e. _V | 
						
							| 24 | 19 21 22 23 | ovmpo |  |-  ( ( A e. _om /\ ( 2nd ` ( Q ` A ) ) e. _V ) -> ( A ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` A ) ) ) = <. suc A , ( A F ( 2nd ` ( Q ` A ) ) ) >. ) | 
						
							| 25 | 16 24 | mpan2 |  |-  ( A e. _om -> ( A ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` A ) ) ) = <. suc A , ( A F ( 2nd ` ( Q ` A ) ) ) >. ) | 
						
							| 26 |  | fvres |  |-  ( A e. _om -> ( ( Q |` _om ) ` A ) = ( Q ` A ) ) | 
						
							| 27 | 26 13 | eqtrd |  |-  ( A e. _om -> ( ( Q |` _om ) ` A ) = <. A , ( 2nd ` ( Q ` A ) ) >. ) | 
						
							| 28 |  | frfnom |  |-  ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) Fn _om | 
						
							| 29 | 1 | reseq1i |  |-  ( Q |` _om ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) | 
						
							| 30 | 29 | fneq1i |  |-  ( ( Q |` _om ) Fn _om <-> ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) Fn _om ) | 
						
							| 31 | 28 30 | mpbir |  |-  ( Q |` _om ) Fn _om | 
						
							| 32 |  | fnfvelrn |  |-  ( ( ( Q |` _om ) Fn _om /\ A e. _om ) -> ( ( Q |` _om ) ` A ) e. ran ( Q |` _om ) ) | 
						
							| 33 | 31 32 | mpan |  |-  ( A e. _om -> ( ( Q |` _om ) ` A ) e. ran ( Q |` _om ) ) | 
						
							| 34 | 27 33 | eqeltrrd |  |-  ( A e. _om -> <. A , ( 2nd ` ( Q ` A ) ) >. e. ran ( Q |` _om ) ) | 
						
							| 35 |  | df-ima |  |-  ( Q " _om ) = ran ( Q |` _om ) | 
						
							| 36 | 34 35 | eleqtrrdi |  |-  ( A e. _om -> <. A , ( 2nd ` ( Q ` A ) ) >. e. ( Q " _om ) ) | 
						
							| 37 |  | df-br |  |-  ( A ( Q " _om ) ( 2nd ` ( Q ` A ) ) <-> <. A , ( 2nd ` ( Q ` A ) ) >. e. ( Q " _om ) ) | 
						
							| 38 | 36 37 | sylibr |  |-  ( A e. _om -> A ( Q " _om ) ( 2nd ` ( Q ` A ) ) ) | 
						
							| 39 | 1 | seqomlem2 |  |-  ( Q " _om ) Fn _om | 
						
							| 40 |  | fnbrfvb |  |-  ( ( ( Q " _om ) Fn _om /\ A e. _om ) -> ( ( ( Q " _om ) ` A ) = ( 2nd ` ( Q ` A ) ) <-> A ( Q " _om ) ( 2nd ` ( Q ` A ) ) ) ) | 
						
							| 41 | 39 40 | mpan |  |-  ( A e. _om -> ( ( ( Q " _om ) ` A ) = ( 2nd ` ( Q ` A ) ) <-> A ( Q " _om ) ( 2nd ` ( Q ` A ) ) ) ) | 
						
							| 42 | 38 41 | mpbird |  |-  ( A e. _om -> ( ( Q " _om ) ` A ) = ( 2nd ` ( Q ` A ) ) ) | 
						
							| 43 | 42 | eqcomd |  |-  ( A e. _om -> ( 2nd ` ( Q ` A ) ) = ( ( Q " _om ) ` A ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( A e. _om -> ( A F ( 2nd ` ( Q ` A ) ) ) = ( A F ( ( Q " _om ) ` A ) ) ) | 
						
							| 45 | 44 | opeq2d |  |-  ( A e. _om -> <. suc A , ( A F ( 2nd ` ( Q ` A ) ) ) >. = <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. ) | 
						
							| 46 | 25 45 | eqtrd |  |-  ( A e. _om -> ( A ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` A ) ) ) = <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. ) | 
						
							| 47 | 15 46 | eqtr3id |  |-  ( A e. _om -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. A , ( 2nd ` ( Q ` A ) ) >. ) = <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. ) | 
						
							| 48 | 12 14 47 | 3eqtrd |  |-  ( A e. _om -> ( Q ` suc A ) = <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. ) | 
						
							| 49 | 3 48 | eqtrd |  |-  ( A e. _om -> ( ( Q |` _om ) ` suc A ) = <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. ) | 
						
							| 50 |  | fnfvelrn |  |-  ( ( ( Q |` _om ) Fn _om /\ suc A e. _om ) -> ( ( Q |` _om ) ` suc A ) e. ran ( Q |` _om ) ) | 
						
							| 51 | 31 2 50 | sylancr |  |-  ( A e. _om -> ( ( Q |` _om ) ` suc A ) e. ran ( Q |` _om ) ) | 
						
							| 52 | 49 51 | eqeltrrd |  |-  ( A e. _om -> <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. e. ran ( Q |` _om ) ) | 
						
							| 53 | 52 35 | eleqtrrdi |  |-  ( A e. _om -> <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. e. ( Q " _om ) ) | 
						
							| 54 |  | df-br |  |-  ( suc A ( Q " _om ) ( A F ( ( Q " _om ) ` A ) ) <-> <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. e. ( Q " _om ) ) | 
						
							| 55 | 53 54 | sylibr |  |-  ( A e. _om -> suc A ( Q " _om ) ( A F ( ( Q " _om ) ` A ) ) ) | 
						
							| 56 |  | fnbrfvb |  |-  ( ( ( Q " _om ) Fn _om /\ suc A e. _om ) -> ( ( ( Q " _om ) ` suc A ) = ( A F ( ( Q " _om ) ` A ) ) <-> suc A ( Q " _om ) ( A F ( ( Q " _om ) ` A ) ) ) ) | 
						
							| 57 | 39 2 56 | sylancr |  |-  ( A e. _om -> ( ( ( Q " _om ) ` suc A ) = ( A F ( ( Q " _om ) ` A ) ) <-> suc A ( Q " _om ) ( A F ( ( Q " _om ) ` A ) ) ) ) | 
						
							| 58 | 55 57 | mpbird |  |-  ( A e. _om -> ( ( Q " _om ) ` suc A ) = ( A F ( ( Q " _om ) ` A ) ) ) |