Step |
Hyp |
Ref |
Expression |
1 |
|
seqp1d.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
seqp1d.2 |
|- ( ph -> N e. Z ) |
3 |
|
seqp1d.3 |
|- K = ( N + 1 ) |
4 |
|
seqp1d.4 |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = A ) |
5 |
|
seqp1d.5 |
|- ( ph -> ( F ` K ) = B ) |
6 |
3
|
fveq2i |
|- ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( N + 1 ) ) |
7 |
6
|
a1i |
|- ( ph -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( N + 1 ) ) ) |
8 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
9 |
|
seqp1 |
|- ( N e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( N + 1 ) ) = ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( seq M ( .+ , F ) ` ( N + 1 ) ) = ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) ) |
11 |
3
|
fveq2i |
|- ( F ` K ) = ( F ` ( N + 1 ) ) |
12 |
11 5
|
eqtr3id |
|- ( ph -> ( F ` ( N + 1 ) ) = B ) |
13 |
4 12
|
oveq12d |
|- ( ph -> ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) = ( A .+ B ) ) |
14 |
7 10 13
|
3eqtrd |
|- ( ph -> ( seq M ( .+ , F ) ` K ) = ( A .+ B ) ) |