Metamath Proof Explorer


Theorem seqres

Description: Restricting its characteristic function to ( ZZ>=M ) does not affect the seq function. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Assertion seqres
|- ( M e. ZZ -> seq M ( .+ , ( F |` ( ZZ>= ` M ) ) ) = seq M ( .+ , F ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( M e. ZZ -> M e. ZZ )
2 fvres
 |-  ( k e. ( ZZ>= ` M ) -> ( ( F |` ( ZZ>= ` M ) ) ` k ) = ( F ` k ) )
3 2 adantl
 |-  ( ( M e. ZZ /\ k e. ( ZZ>= ` M ) ) -> ( ( F |` ( ZZ>= ` M ) ) ` k ) = ( F ` k ) )
4 1 3 seqfeq
 |-  ( M e. ZZ -> seq M ( .+ , ( F |` ( ZZ>= ` M ) ) ) = seq M ( .+ , F ) )