| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqshft2.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
seqshft2.2 |
|- ( ph -> K e. ZZ ) |
| 3 |
|
seqshft2.3 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = ( G ` ( k + K ) ) ) |
| 4 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
| 5 |
1 4
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
| 6 |
|
eleq1 |
|- ( x = M -> ( x e. ( M ... N ) <-> M e. ( M ... N ) ) ) |
| 7 |
|
fveq2 |
|- ( x = M -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` M ) ) |
| 8 |
|
fvoveq1 |
|- ( x = M -> ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) |
| 9 |
7 8
|
eqeq12d |
|- ( x = M -> ( ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) <-> ( seq M ( .+ , F ) ` M ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) ) |
| 10 |
6 9
|
imbi12d |
|- ( x = M -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) <-> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) ) ) |
| 11 |
10
|
imbi2d |
|- ( x = M -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) ) <-> ( ph -> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) ) ) ) |
| 12 |
|
eleq1 |
|- ( x = n -> ( x e. ( M ... N ) <-> n e. ( M ... N ) ) ) |
| 13 |
|
fveq2 |
|- ( x = n -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` n ) ) |
| 14 |
|
fvoveq1 |
|- ( x = n -> ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) |
| 15 |
13 14
|
eqeq12d |
|- ( x = n -> ( ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) <-> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) ) |
| 16 |
12 15
|
imbi12d |
|- ( x = n -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) <-> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) ) ) |
| 17 |
16
|
imbi2d |
|- ( x = n -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) ) <-> ( ph -> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) ) ) ) |
| 18 |
|
eleq1 |
|- ( x = ( n + 1 ) -> ( x e. ( M ... N ) <-> ( n + 1 ) e. ( M ... N ) ) ) |
| 19 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) |
| 20 |
|
fvoveq1 |
|- ( x = ( n + 1 ) -> ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) |
| 21 |
19 20
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) <-> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) ) |
| 22 |
18 21
|
imbi12d |
|- ( x = ( n + 1 ) -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) <-> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) ) ) |
| 23 |
22
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) ) ) ) |
| 24 |
|
eleq1 |
|- ( x = N -> ( x e. ( M ... N ) <-> N e. ( M ... N ) ) ) |
| 25 |
|
fveq2 |
|- ( x = N -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` N ) ) |
| 26 |
|
fvoveq1 |
|- ( x = N -> ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) |
| 27 |
25 26
|
eqeq12d |
|- ( x = N -> ( ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) <-> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) ) |
| 28 |
24 27
|
imbi12d |
|- ( x = N -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) <-> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) ) ) |
| 29 |
28
|
imbi2d |
|- ( x = N -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) ) <-> ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) ) ) ) |
| 30 |
|
fveq2 |
|- ( k = M -> ( F ` k ) = ( F ` M ) ) |
| 31 |
|
fvoveq1 |
|- ( k = M -> ( G ` ( k + K ) ) = ( G ` ( M + K ) ) ) |
| 32 |
30 31
|
eqeq12d |
|- ( k = M -> ( ( F ` k ) = ( G ` ( k + K ) ) <-> ( F ` M ) = ( G ` ( M + K ) ) ) ) |
| 33 |
3
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) ( F ` k ) = ( G ` ( k + K ) ) ) |
| 34 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
| 35 |
1 34
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
| 36 |
32 33 35
|
rspcdva |
|- ( ph -> ( F ` M ) = ( G ` ( M + K ) ) ) |
| 37 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 38 |
1 37
|
syl |
|- ( ph -> M e. ZZ ) |
| 39 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 40 |
38 39
|
syl |
|- ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 41 |
38 2
|
zaddcld |
|- ( ph -> ( M + K ) e. ZZ ) |
| 42 |
|
seq1 |
|- ( ( M + K ) e. ZZ -> ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) = ( G ` ( M + K ) ) ) |
| 43 |
41 42
|
syl |
|- ( ph -> ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) = ( G ` ( M + K ) ) ) |
| 44 |
36 40 43
|
3eqtr4d |
|- ( ph -> ( seq M ( .+ , F ) ` M ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) |
| 45 |
44
|
a1i13 |
|- ( M e. ZZ -> ( ph -> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) ) ) |
| 46 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) -> n e. ( M ... N ) ) |
| 47 |
46
|
adantl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( M ... N ) ) |
| 48 |
47
|
expr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n + 1 ) e. ( M ... N ) -> n e. ( M ... N ) ) ) |
| 49 |
48
|
imim1d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) ) ) |
| 50 |
|
oveq1 |
|- ( ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) -> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( F ` ( n + 1 ) ) ) ) |
| 51 |
|
simprl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( ZZ>= ` M ) ) |
| 52 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 53 |
51 52
|
syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 54 |
2
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> K e. ZZ ) |
| 55 |
|
eluzadd |
|- ( ( n e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( n + K ) e. ( ZZ>= ` ( M + K ) ) ) |
| 56 |
51 54 55
|
syl2anc |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( n + K ) e. ( ZZ>= ` ( M + K ) ) ) |
| 57 |
|
seqp1 |
|- ( ( n + K ) e. ( ZZ>= ` ( M + K ) ) -> ( seq ( M + K ) ( .+ , G ) ` ( ( n + K ) + 1 ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( G ` ( ( n + K ) + 1 ) ) ) ) |
| 58 |
56 57
|
syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq ( M + K ) ( .+ , G ) ` ( ( n + K ) + 1 ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( G ` ( ( n + K ) + 1 ) ) ) ) |
| 59 |
|
eluzelz |
|- ( n e. ( ZZ>= ` M ) -> n e. ZZ ) |
| 60 |
51 59
|
syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ZZ ) |
| 61 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
| 62 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 63 |
|
ax-1cn |
|- 1 e. CC |
| 64 |
|
add32 |
|- ( ( n e. CC /\ 1 e. CC /\ K e. CC ) -> ( ( n + 1 ) + K ) = ( ( n + K ) + 1 ) ) |
| 65 |
63 64
|
mp3an2 |
|- ( ( n e. CC /\ K e. CC ) -> ( ( n + 1 ) + K ) = ( ( n + K ) + 1 ) ) |
| 66 |
61 62 65
|
syl2an |
|- ( ( n e. ZZ /\ K e. ZZ ) -> ( ( n + 1 ) + K ) = ( ( n + K ) + 1 ) ) |
| 67 |
60 54 66
|
syl2anc |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( n + 1 ) + K ) = ( ( n + K ) + 1 ) ) |
| 68 |
67
|
fveq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + K ) + 1 ) ) ) |
| 69 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
| 70 |
|
fvoveq1 |
|- ( k = ( n + 1 ) -> ( G ` ( k + K ) ) = ( G ` ( ( n + 1 ) + K ) ) ) |
| 71 |
69 70
|
eqeq12d |
|- ( k = ( n + 1 ) -> ( ( F ` k ) = ( G ` ( k + K ) ) <-> ( F ` ( n + 1 ) ) = ( G ` ( ( n + 1 ) + K ) ) ) ) |
| 72 |
33
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. k e. ( M ... N ) ( F ` k ) = ( G ` ( k + K ) ) ) |
| 73 |
|
simprr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( n + 1 ) e. ( M ... N ) ) |
| 74 |
71 72 73
|
rspcdva |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` ( n + 1 ) ) = ( G ` ( ( n + 1 ) + K ) ) ) |
| 75 |
67
|
fveq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( G ` ( ( n + 1 ) + K ) ) = ( G ` ( ( n + K ) + 1 ) ) ) |
| 76 |
74 75
|
eqtrd |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` ( n + 1 ) ) = ( G ` ( ( n + K ) + 1 ) ) ) |
| 77 |
76
|
oveq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( G ` ( ( n + K ) + 1 ) ) ) ) |
| 78 |
58 68 77
|
3eqtr4d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( F ` ( n + 1 ) ) ) ) |
| 79 |
53 78
|
eqeq12d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) <-> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 80 |
50 79
|
imbitrrid |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) ) |
| 81 |
49 80
|
animpimp2impd |
|- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) ) -> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) ) ) ) |
| 82 |
11 17 23 29 45 81
|
uzind4 |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) ) ) |
| 83 |
1 82
|
mpcom |
|- ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) ) |
| 84 |
5 83
|
mpd |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) |