Step |
Hyp |
Ref |
Expression |
1 |
|
seqshft2.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
2 |
|
seqshft2.2 |
|- ( ph -> K e. ZZ ) |
3 |
|
seqshft2.3 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = ( G ` ( k + K ) ) ) |
4 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
5 |
1 4
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
6 |
|
eleq1 |
|- ( x = M -> ( x e. ( M ... N ) <-> M e. ( M ... N ) ) ) |
7 |
|
fveq2 |
|- ( x = M -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` M ) ) |
8 |
|
fvoveq1 |
|- ( x = M -> ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) |
9 |
7 8
|
eqeq12d |
|- ( x = M -> ( ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) <-> ( seq M ( .+ , F ) ` M ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) ) |
10 |
6 9
|
imbi12d |
|- ( x = M -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) <-> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) ) ) |
11 |
10
|
imbi2d |
|- ( x = M -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) ) <-> ( ph -> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) ) ) ) |
12 |
|
eleq1 |
|- ( x = n -> ( x e. ( M ... N ) <-> n e. ( M ... N ) ) ) |
13 |
|
fveq2 |
|- ( x = n -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` n ) ) |
14 |
|
fvoveq1 |
|- ( x = n -> ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) |
15 |
13 14
|
eqeq12d |
|- ( x = n -> ( ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) <-> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) ) |
16 |
12 15
|
imbi12d |
|- ( x = n -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) <-> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) ) ) |
17 |
16
|
imbi2d |
|- ( x = n -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) ) <-> ( ph -> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) ) ) ) |
18 |
|
eleq1 |
|- ( x = ( n + 1 ) -> ( x e. ( M ... N ) <-> ( n + 1 ) e. ( M ... N ) ) ) |
19 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) |
20 |
|
fvoveq1 |
|- ( x = ( n + 1 ) -> ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) |
21 |
19 20
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) <-> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) ) |
22 |
18 21
|
imbi12d |
|- ( x = ( n + 1 ) -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) <-> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) ) ) |
23 |
22
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) ) ) ) |
24 |
|
eleq1 |
|- ( x = N -> ( x e. ( M ... N ) <-> N e. ( M ... N ) ) ) |
25 |
|
fveq2 |
|- ( x = N -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` N ) ) |
26 |
|
fvoveq1 |
|- ( x = N -> ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) |
27 |
25 26
|
eqeq12d |
|- ( x = N -> ( ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) <-> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) ) |
28 |
24 27
|
imbi12d |
|- ( x = N -> ( ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) <-> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) ) ) |
29 |
28
|
imbi2d |
|- ( x = N -> ( ( ph -> ( x e. ( M ... N ) -> ( seq M ( .+ , F ) ` x ) = ( seq ( M + K ) ( .+ , G ) ` ( x + K ) ) ) ) <-> ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) ) ) ) |
30 |
|
fveq2 |
|- ( k = M -> ( F ` k ) = ( F ` M ) ) |
31 |
|
fvoveq1 |
|- ( k = M -> ( G ` ( k + K ) ) = ( G ` ( M + K ) ) ) |
32 |
30 31
|
eqeq12d |
|- ( k = M -> ( ( F ` k ) = ( G ` ( k + K ) ) <-> ( F ` M ) = ( G ` ( M + K ) ) ) ) |
33 |
3
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) ( F ` k ) = ( G ` ( k + K ) ) ) |
34 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
35 |
1 34
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
36 |
32 33 35
|
rspcdva |
|- ( ph -> ( F ` M ) = ( G ` ( M + K ) ) ) |
37 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
38 |
1 37
|
syl |
|- ( ph -> M e. ZZ ) |
39 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
40 |
38 39
|
syl |
|- ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
41 |
38 2
|
zaddcld |
|- ( ph -> ( M + K ) e. ZZ ) |
42 |
|
seq1 |
|- ( ( M + K ) e. ZZ -> ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) = ( G ` ( M + K ) ) ) |
43 |
41 42
|
syl |
|- ( ph -> ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) = ( G ` ( M + K ) ) ) |
44 |
36 40 43
|
3eqtr4d |
|- ( ph -> ( seq M ( .+ , F ) ` M ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) |
45 |
44
|
a1i13 |
|- ( M e. ZZ -> ( ph -> ( M e. ( M ... N ) -> ( seq M ( .+ , F ) ` M ) = ( seq ( M + K ) ( .+ , G ) ` ( M + K ) ) ) ) ) |
46 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) -> n e. ( M ... N ) ) |
47 |
46
|
adantl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( M ... N ) ) |
48 |
47
|
expr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n + 1 ) e. ( M ... N ) -> n e. ( M ... N ) ) ) |
49 |
48
|
imim1d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) ) ) |
50 |
|
oveq1 |
|- ( ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) -> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( F ` ( n + 1 ) ) ) ) |
51 |
|
simprl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( ZZ>= ` M ) ) |
52 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
53 |
51 52
|
syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
54 |
2
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> K e. ZZ ) |
55 |
|
eluzadd |
|- ( ( n e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( n + K ) e. ( ZZ>= ` ( M + K ) ) ) |
56 |
51 54 55
|
syl2anc |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( n + K ) e. ( ZZ>= ` ( M + K ) ) ) |
57 |
|
seqp1 |
|- ( ( n + K ) e. ( ZZ>= ` ( M + K ) ) -> ( seq ( M + K ) ( .+ , G ) ` ( ( n + K ) + 1 ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( G ` ( ( n + K ) + 1 ) ) ) ) |
58 |
56 57
|
syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq ( M + K ) ( .+ , G ) ` ( ( n + K ) + 1 ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( G ` ( ( n + K ) + 1 ) ) ) ) |
59 |
|
eluzelz |
|- ( n e. ( ZZ>= ` M ) -> n e. ZZ ) |
60 |
51 59
|
syl |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ZZ ) |
61 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
62 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
63 |
|
ax-1cn |
|- 1 e. CC |
64 |
|
add32 |
|- ( ( n e. CC /\ 1 e. CC /\ K e. CC ) -> ( ( n + 1 ) + K ) = ( ( n + K ) + 1 ) ) |
65 |
63 64
|
mp3an2 |
|- ( ( n e. CC /\ K e. CC ) -> ( ( n + 1 ) + K ) = ( ( n + K ) + 1 ) ) |
66 |
61 62 65
|
syl2an |
|- ( ( n e. ZZ /\ K e. ZZ ) -> ( ( n + 1 ) + K ) = ( ( n + K ) + 1 ) ) |
67 |
60 54 66
|
syl2anc |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( n + 1 ) + K ) = ( ( n + K ) + 1 ) ) |
68 |
67
|
fveq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + K ) + 1 ) ) ) |
69 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
70 |
|
fvoveq1 |
|- ( k = ( n + 1 ) -> ( G ` ( k + K ) ) = ( G ` ( ( n + 1 ) + K ) ) ) |
71 |
69 70
|
eqeq12d |
|- ( k = ( n + 1 ) -> ( ( F ` k ) = ( G ` ( k + K ) ) <-> ( F ` ( n + 1 ) ) = ( G ` ( ( n + 1 ) + K ) ) ) ) |
72 |
33
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. k e. ( M ... N ) ( F ` k ) = ( G ` ( k + K ) ) ) |
73 |
|
simprr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( n + 1 ) e. ( M ... N ) ) |
74 |
71 72 73
|
rspcdva |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` ( n + 1 ) ) = ( G ` ( ( n + 1 ) + K ) ) ) |
75 |
67
|
fveq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( G ` ( ( n + 1 ) + K ) ) = ( G ` ( ( n + K ) + 1 ) ) ) |
76 |
74 75
|
eqtrd |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` ( n + 1 ) ) = ( G ` ( ( n + K ) + 1 ) ) ) |
77 |
76
|
oveq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( G ` ( ( n + K ) + 1 ) ) ) ) |
78 |
58 68 77
|
3eqtr4d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( F ` ( n + 1 ) ) ) ) |
79 |
53 78
|
eqeq12d |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) <-> ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) .+ ( F ` ( n + 1 ) ) ) ) ) |
80 |
50 79
|
syl5ibr |
|- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) ) |
81 |
49 80
|
animpimp2impd |
|- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( n e. ( M ... N ) -> ( seq M ( .+ , F ) ` n ) = ( seq ( M + K ) ( .+ , G ) ` ( n + K ) ) ) ) -> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( seq ( M + K ) ( .+ , G ) ` ( ( n + 1 ) + K ) ) ) ) ) ) |
82 |
11 17 23 29 45 81
|
uzind4 |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) ) ) |
83 |
1 82
|
mpcom |
|- ( ph -> ( N e. ( M ... N ) -> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) ) |
84 |
5 83
|
mpd |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq ( M + K ) ( .+ , G ) ` ( N + K ) ) ) |