| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqhomo.1 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 2 |
|
seqhomo.2 |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
| 3 |
|
seqz.3 |
|- ( ( ph /\ x e. S ) -> ( Z .+ x ) = Z ) |
| 4 |
|
seqz.4 |
|- ( ( ph /\ x e. S ) -> ( x .+ Z ) = Z ) |
| 5 |
|
seqz.5 |
|- ( ph -> K e. ( M ... N ) ) |
| 6 |
|
seqz.6 |
|- ( ph -> N e. V ) |
| 7 |
|
seqz.7 |
|- ( ph -> ( F ` K ) = Z ) |
| 8 |
|
elfzuz |
|- ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) |
| 9 |
5 8
|
syl |
|- ( ph -> K e. ( ZZ>= ` M ) ) |
| 10 |
5
|
elfzelzd |
|- ( ph -> K e. ZZ ) |
| 11 |
|
seq1 |
|- ( K e. ZZ -> ( seq K ( .+ , F ) ` K ) = ( F ` K ) ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( seq K ( .+ , F ) ` K ) = ( F ` K ) ) |
| 13 |
12 7
|
eqtrd |
|- ( ph -> ( seq K ( .+ , F ) ` K ) = Z ) |
| 14 |
|
seqeq1 |
|- ( K = M -> seq K ( .+ , F ) = seq M ( .+ , F ) ) |
| 15 |
14
|
fveq1d |
|- ( K = M -> ( seq K ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) |
| 16 |
15
|
eqeq1d |
|- ( K = M -> ( ( seq K ( .+ , F ) ` K ) = Z <-> ( seq M ( .+ , F ) ` K ) = Z ) ) |
| 17 |
13 16
|
syl5ibcom |
|- ( ph -> ( K = M -> ( seq M ( .+ , F ) ` K ) = Z ) ) |
| 18 |
|
eluzel2 |
|- ( K e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 19 |
9 18
|
syl |
|- ( ph -> M e. ZZ ) |
| 20 |
|
seqm1 |
|- ( ( M e. ZZ /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` K ) = ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ ( F ` K ) ) ) |
| 21 |
19 20
|
sylan |
|- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` K ) = ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ ( F ` K ) ) ) |
| 22 |
7
|
adantr |
|- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( F ` K ) = Z ) |
| 23 |
22
|
oveq2d |
|- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ ( F ` K ) ) = ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ Z ) ) |
| 24 |
|
oveq1 |
|- ( x = ( seq M ( .+ , F ) ` ( K - 1 ) ) -> ( x .+ Z ) = ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ Z ) ) |
| 25 |
24
|
eqeq1d |
|- ( x = ( seq M ( .+ , F ) ` ( K - 1 ) ) -> ( ( x .+ Z ) = Z <-> ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ Z ) = Z ) ) |
| 26 |
4
|
ralrimiva |
|- ( ph -> A. x e. S ( x .+ Z ) = Z ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> A. x e. S ( x .+ Z ) = Z ) |
| 28 |
|
eluzp1m1 |
|- ( ( M e. ZZ /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( K - 1 ) e. ( ZZ>= ` M ) ) |
| 29 |
19 28
|
sylan |
|- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( K - 1 ) e. ( ZZ>= ` M ) ) |
| 30 |
|
fzssp1 |
|- ( M ... ( K - 1 ) ) C_ ( M ... ( ( K - 1 ) + 1 ) ) |
| 31 |
10
|
zcnd |
|- ( ph -> K e. CC ) |
| 32 |
|
ax-1cn |
|- 1 e. CC |
| 33 |
|
npcan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) |
| 34 |
31 32 33
|
sylancl |
|- ( ph -> ( ( K - 1 ) + 1 ) = K ) |
| 35 |
34
|
oveq2d |
|- ( ph -> ( M ... ( ( K - 1 ) + 1 ) ) = ( M ... K ) ) |
| 36 |
30 35
|
sseqtrid |
|- ( ph -> ( M ... ( K - 1 ) ) C_ ( M ... K ) ) |
| 37 |
|
elfzuz3 |
|- ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) |
| 38 |
5 37
|
syl |
|- ( ph -> N e. ( ZZ>= ` K ) ) |
| 39 |
|
fzss2 |
|- ( N e. ( ZZ>= ` K ) -> ( M ... K ) C_ ( M ... N ) ) |
| 40 |
38 39
|
syl |
|- ( ph -> ( M ... K ) C_ ( M ... N ) ) |
| 41 |
36 40
|
sstrd |
|- ( ph -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) |
| 43 |
42
|
sselda |
|- ( ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( M ... N ) ) |
| 44 |
2
|
adantlr |
|- ( ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
| 45 |
43 44
|
syldan |
|- ( ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( F ` x ) e. S ) |
| 46 |
1
|
adantlr |
|- ( ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 47 |
29 45 46
|
seqcl |
|- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` ( K - 1 ) ) e. S ) |
| 48 |
25 27 47
|
rspcdva |
|- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ Z ) = Z ) |
| 49 |
23 48
|
eqtrd |
|- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ ( F ` K ) ) = Z ) |
| 50 |
21 49
|
eqtrd |
|- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` K ) = Z ) |
| 51 |
50
|
ex |
|- ( ph -> ( K e. ( ZZ>= ` ( M + 1 ) ) -> ( seq M ( .+ , F ) ` K ) = Z ) ) |
| 52 |
|
uzp1 |
|- ( K e. ( ZZ>= ` M ) -> ( K = M \/ K e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 53 |
9 52
|
syl |
|- ( ph -> ( K = M \/ K e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 54 |
17 51 53
|
mpjaod |
|- ( ph -> ( seq M ( .+ , F ) ` K ) = Z ) |
| 55 |
54 7
|
eqtr4d |
|- ( ph -> ( seq M ( .+ , F ) ` K ) = ( F ` K ) ) |
| 56 |
|
eqidd |
|- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> ( F ` x ) = ( F ` x ) ) |
| 57 |
9 55 38 56
|
seqfveq2 |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq K ( .+ , F ) ` N ) ) |
| 58 |
|
fvex |
|- ( F ` K ) e. _V |
| 59 |
58
|
elsn |
|- ( ( F ` K ) e. { Z } <-> ( F ` K ) = Z ) |
| 60 |
7 59
|
sylibr |
|- ( ph -> ( F ` K ) e. { Z } ) |
| 61 |
|
simprl |
|- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> x e. { Z } ) |
| 62 |
|
velsn |
|- ( x e. { Z } <-> x = Z ) |
| 63 |
61 62
|
sylib |
|- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> x = Z ) |
| 64 |
63
|
oveq1d |
|- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> ( x .+ y ) = ( Z .+ y ) ) |
| 65 |
|
oveq2 |
|- ( x = y -> ( Z .+ x ) = ( Z .+ y ) ) |
| 66 |
65
|
eqeq1d |
|- ( x = y -> ( ( Z .+ x ) = Z <-> ( Z .+ y ) = Z ) ) |
| 67 |
3
|
ralrimiva |
|- ( ph -> A. x e. S ( Z .+ x ) = Z ) |
| 68 |
67
|
adantr |
|- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> A. x e. S ( Z .+ x ) = Z ) |
| 69 |
|
simprr |
|- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> y e. S ) |
| 70 |
66 68 69
|
rspcdva |
|- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> ( Z .+ y ) = Z ) |
| 71 |
64 70
|
eqtrd |
|- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> ( x .+ y ) = Z ) |
| 72 |
|
ovex |
|- ( x .+ y ) e. _V |
| 73 |
72
|
elsn |
|- ( ( x .+ y ) e. { Z } <-> ( x .+ y ) = Z ) |
| 74 |
71 73
|
sylibr |
|- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> ( x .+ y ) e. { Z } ) |
| 75 |
|
peano2uz |
|- ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
| 76 |
9 75
|
syl |
|- ( ph -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
| 77 |
|
fzss1 |
|- ( ( K + 1 ) e. ( ZZ>= ` M ) -> ( ( K + 1 ) ... N ) C_ ( M ... N ) ) |
| 78 |
76 77
|
syl |
|- ( ph -> ( ( K + 1 ) ... N ) C_ ( M ... N ) ) |
| 79 |
78
|
sselda |
|- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> x e. ( M ... N ) ) |
| 80 |
79 2
|
syldan |
|- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> ( F ` x ) e. S ) |
| 81 |
60 74 38 80
|
seqcl2 |
|- ( ph -> ( seq K ( .+ , F ) ` N ) e. { Z } ) |
| 82 |
|
elsni |
|- ( ( seq K ( .+ , F ) ` N ) e. { Z } -> ( seq K ( .+ , F ) ` N ) = Z ) |
| 83 |
81 82
|
syl |
|- ( ph -> ( seq K ( .+ , F ) ` N ) = Z ) |
| 84 |
57 83
|
eqtrd |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = Z ) |