Step |
Hyp |
Ref |
Expression |
1 |
|
ser0.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
00id |
|- ( 0 + 0 ) = 0 |
3 |
2
|
a1i |
|- ( N e. Z -> ( 0 + 0 ) = 0 ) |
4 |
1
|
eleq2i |
|- ( N e. Z <-> N e. ( ZZ>= ` M ) ) |
5 |
4
|
biimpi |
|- ( N e. Z -> N e. ( ZZ>= ` M ) ) |
6 |
|
0cn |
|- 0 e. CC |
7 |
|
elfzuz |
|- ( k e. ( M ... N ) -> k e. ( ZZ>= ` M ) ) |
8 |
7 1
|
eleqtrrdi |
|- ( k e. ( M ... N ) -> k e. Z ) |
9 |
8
|
adantl |
|- ( ( N e. Z /\ k e. ( M ... N ) ) -> k e. Z ) |
10 |
|
fvconst2g |
|- ( ( 0 e. CC /\ k e. Z ) -> ( ( Z X. { 0 } ) ` k ) = 0 ) |
11 |
6 9 10
|
sylancr |
|- ( ( N e. Z /\ k e. ( M ... N ) ) -> ( ( Z X. { 0 } ) ` k ) = 0 ) |
12 |
3 5 11
|
seqid3 |
|- ( N e. Z -> ( seq M ( + , ( Z X. { 0 } ) ) ` N ) = 0 ) |