| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ser0.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
1
|
ser0 |
|- ( k e. Z -> ( seq M ( + , ( Z X. { 0 } ) ) ` k ) = 0 ) |
| 3 |
|
c0ex |
|- 0 e. _V |
| 4 |
3
|
fvconst2 |
|- ( k e. Z -> ( ( Z X. { 0 } ) ` k ) = 0 ) |
| 5 |
2 4
|
eqtr4d |
|- ( k e. Z -> ( seq M ( + , ( Z X. { 0 } ) ) ` k ) = ( ( Z X. { 0 } ) ` k ) ) |
| 6 |
5
|
rgen |
|- A. k e. Z ( seq M ( + , ( Z X. { 0 } ) ) ` k ) = ( ( Z X. { 0 } ) ` k ) |
| 7 |
|
seqfn |
|- ( M e. ZZ -> seq M ( + , ( Z X. { 0 } ) ) Fn ( ZZ>= ` M ) ) |
| 8 |
1
|
fneq2i |
|- ( seq M ( + , ( Z X. { 0 } ) ) Fn Z <-> seq M ( + , ( Z X. { 0 } ) ) Fn ( ZZ>= ` M ) ) |
| 9 |
7 8
|
sylibr |
|- ( M e. ZZ -> seq M ( + , ( Z X. { 0 } ) ) Fn Z ) |
| 10 |
3
|
fconst |
|- ( Z X. { 0 } ) : Z --> { 0 } |
| 11 |
|
ffn |
|- ( ( Z X. { 0 } ) : Z --> { 0 } -> ( Z X. { 0 } ) Fn Z ) |
| 12 |
10 11
|
ax-mp |
|- ( Z X. { 0 } ) Fn Z |
| 13 |
|
eqfnfv |
|- ( ( seq M ( + , ( Z X. { 0 } ) ) Fn Z /\ ( Z X. { 0 } ) Fn Z ) -> ( seq M ( + , ( Z X. { 0 } ) ) = ( Z X. { 0 } ) <-> A. k e. Z ( seq M ( + , ( Z X. { 0 } ) ) ` k ) = ( ( Z X. { 0 } ) ` k ) ) ) |
| 14 |
9 12 13
|
sylancl |
|- ( M e. ZZ -> ( seq M ( + , ( Z X. { 0 } ) ) = ( Z X. { 0 } ) <-> A. k e. Z ( seq M ( + , ( Z X. { 0 } ) ) ` k ) = ( ( Z X. { 0 } ) ` k ) ) ) |
| 15 |
6 14
|
mpbiri |
|- ( M e. ZZ -> seq M ( + , ( Z X. { 0 } ) ) = ( Z X. { 0 } ) ) |