Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( j = 1 -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( seq 1 ( + , ( NN X. { A } ) ) ` 1 ) ) |
2 |
|
oveq1 |
|- ( j = 1 -> ( j x. A ) = ( 1 x. A ) ) |
3 |
1 2
|
eqeq12d |
|- ( j = 1 -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) <-> ( seq 1 ( + , ( NN X. { A } ) ) ` 1 ) = ( 1 x. A ) ) ) |
4 |
3
|
imbi2d |
|- ( j = 1 -> ( ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) ) <-> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` 1 ) = ( 1 x. A ) ) ) ) |
5 |
|
fveq2 |
|- ( j = k -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( seq 1 ( + , ( NN X. { A } ) ) ` k ) ) |
6 |
|
oveq1 |
|- ( j = k -> ( j x. A ) = ( k x. A ) ) |
7 |
5 6
|
eqeq12d |
|- ( j = k -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) <-> ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) ) ) |
8 |
7
|
imbi2d |
|- ( j = k -> ( ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) ) <-> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) ) ) ) |
9 |
|
fveq2 |
|- ( j = ( k + 1 ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) ) |
10 |
|
oveq1 |
|- ( j = ( k + 1 ) -> ( j x. A ) = ( ( k + 1 ) x. A ) ) |
11 |
9 10
|
eqeq12d |
|- ( j = ( k + 1 ) -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) <-> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) ) ) |
12 |
11
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) ) <-> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) ) ) ) |
13 |
|
fveq2 |
|- ( j = N -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( seq 1 ( + , ( NN X. { A } ) ) ` N ) ) |
14 |
|
oveq1 |
|- ( j = N -> ( j x. A ) = ( N x. A ) ) |
15 |
13 14
|
eqeq12d |
|- ( j = N -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) <-> ( seq 1 ( + , ( NN X. { A } ) ) ` N ) = ( N x. A ) ) ) |
16 |
15
|
imbi2d |
|- ( j = N -> ( ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) ) <-> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` N ) = ( N x. A ) ) ) ) |
17 |
|
1z |
|- 1 e. ZZ |
18 |
|
1nn |
|- 1 e. NN |
19 |
|
fvconst2g |
|- ( ( A e. CC /\ 1 e. NN ) -> ( ( NN X. { A } ) ` 1 ) = A ) |
20 |
18 19
|
mpan2 |
|- ( A e. CC -> ( ( NN X. { A } ) ` 1 ) = A ) |
21 |
|
mulid2 |
|- ( A e. CC -> ( 1 x. A ) = A ) |
22 |
20 21
|
eqtr4d |
|- ( A e. CC -> ( ( NN X. { A } ) ` 1 ) = ( 1 x. A ) ) |
23 |
17 22
|
seq1i |
|- ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` 1 ) = ( 1 x. A ) ) |
24 |
|
oveq1 |
|- ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + A ) = ( ( k x. A ) + A ) ) |
25 |
|
seqp1 |
|- ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + ( ( NN X. { A } ) ` ( k + 1 ) ) ) ) |
26 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
27 |
25 26
|
eleq2s |
|- ( k e. NN -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + ( ( NN X. { A } ) ` ( k + 1 ) ) ) ) |
28 |
27
|
adantl |
|- ( ( A e. CC /\ k e. NN ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + ( ( NN X. { A } ) ` ( k + 1 ) ) ) ) |
29 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
30 |
|
fvconst2g |
|- ( ( A e. CC /\ ( k + 1 ) e. NN ) -> ( ( NN X. { A } ) ` ( k + 1 ) ) = A ) |
31 |
29 30
|
sylan2 |
|- ( ( A e. CC /\ k e. NN ) -> ( ( NN X. { A } ) ` ( k + 1 ) ) = A ) |
32 |
31
|
oveq2d |
|- ( ( A e. CC /\ k e. NN ) -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + ( ( NN X. { A } ) ` ( k + 1 ) ) ) = ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + A ) ) |
33 |
28 32
|
eqtrd |
|- ( ( A e. CC /\ k e. NN ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + A ) ) |
34 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
35 |
|
id |
|- ( A e. CC -> A e. CC ) |
36 |
|
ax-1cn |
|- 1 e. CC |
37 |
|
adddir |
|- ( ( k e. CC /\ 1 e. CC /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + ( 1 x. A ) ) ) |
38 |
36 37
|
mp3an2 |
|- ( ( k e. CC /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + ( 1 x. A ) ) ) |
39 |
34 35 38
|
syl2anr |
|- ( ( A e. CC /\ k e. NN ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + ( 1 x. A ) ) ) |
40 |
21
|
adantr |
|- ( ( A e. CC /\ k e. NN ) -> ( 1 x. A ) = A ) |
41 |
40
|
oveq2d |
|- ( ( A e. CC /\ k e. NN ) -> ( ( k x. A ) + ( 1 x. A ) ) = ( ( k x. A ) + A ) ) |
42 |
39 41
|
eqtrd |
|- ( ( A e. CC /\ k e. NN ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + A ) ) |
43 |
33 42
|
eqeq12d |
|- ( ( A e. CC /\ k e. NN ) -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) <-> ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + A ) = ( ( k x. A ) + A ) ) ) |
44 |
24 43
|
syl5ibr |
|- ( ( A e. CC /\ k e. NN ) -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) ) ) |
45 |
44
|
expcom |
|- ( k e. NN -> ( A e. CC -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) ) ) ) |
46 |
45
|
a2d |
|- ( k e. NN -> ( ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) ) -> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) ) ) ) |
47 |
4 8 12 16 23 46
|
nnind |
|- ( N e. NN -> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` N ) = ( N x. A ) ) ) |
48 |
47
|
impcom |
|- ( ( A e. CC /\ N e. NN ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` N ) = ( N x. A ) ) |