Description: The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008) (Proof shortened by Mario Carneiro, 31-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | serclim0 | |- ( M e. ZZ -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
2 | 1 | ser0f | |- ( M e. ZZ -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) = ( ( ZZ>= ` M ) X. { 0 } ) ) |
3 | 0cn | |- 0 e. CC |
|
4 | ssid | |- ( ZZ>= ` M ) C_ ( ZZ>= ` M ) |
|
5 | fvex | |- ( ZZ>= ` M ) e. _V |
|
6 | 4 5 | climconst2 | |- ( ( 0 e. CC /\ M e. ZZ ) -> ( ( ZZ>= ` M ) X. { 0 } ) ~~> 0 ) |
7 | 3 6 | mpan | |- ( M e. ZZ -> ( ( ZZ>= ` M ) X. { 0 } ) ~~> 0 ) |
8 | 2 7 | eqbrtrd | |- ( M e. ZZ -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) |