Description: An infinite series of complex terms is a function from NN to CC . (Contributed by NM, 18-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | serf.1 | |- Z = ( ZZ>= ` M ) |
|
| serf.2 | |- ( ph -> M e. ZZ ) |
||
| serf.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| Assertion | serf | |- ( ph -> seq M ( + , F ) : Z --> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | serf.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | serf.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | serf.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 4 | addcl | |- ( ( k e. CC /\ x e. CC ) -> ( k + x ) e. CC ) |
|
| 5 | 4 | adantl | |- ( ( ph /\ ( k e. CC /\ x e. CC ) ) -> ( k + x ) e. CC ) |
| 6 | 1 2 3 5 | seqf | |- ( ph -> seq M ( + , F ) : Z --> CC ) |