| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caucvgb.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
serf0.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
serf0.3 |
|- ( ph -> F e. V ) |
| 4 |
|
serf0.4 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| 5 |
|
serf0.5 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 6 |
1
|
caucvgb |
|- ( ( M e. ZZ /\ seq M ( + , F ) e. dom ~~> ) -> ( seq M ( + , F ) e. dom ~~> <-> A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
| 7 |
2 4 6
|
syl2anc |
|- ( ph -> ( seq M ( + , F ) e. dom ~~> <-> A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
| 8 |
4 7
|
mpbid |
|- ( ph -> A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) |
| 9 |
1
|
cau3 |
|- ( A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` j ) ) ) < x ) <-> A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) ) |
| 10 |
8 9
|
sylib |
|- ( ph -> A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) ) |
| 11 |
1
|
peano2uzs |
|- ( j e. Z -> ( j + 1 ) e. Z ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ j e. Z ) -> ( j + 1 ) e. Z ) |
| 13 |
|
eluzelz |
|- ( m e. ( ZZ>= ` j ) -> m e. ZZ ) |
| 14 |
|
uzid |
|- ( m e. ZZ -> m e. ( ZZ>= ` m ) ) |
| 15 |
|
peano2uz |
|- ( m e. ( ZZ>= ` m ) -> ( m + 1 ) e. ( ZZ>= ` m ) ) |
| 16 |
|
fveq2 |
|- ( k = ( m + 1 ) -> ( seq M ( + , F ) ` k ) = ( seq M ( + , F ) ` ( m + 1 ) ) ) |
| 17 |
16
|
oveq2d |
|- ( k = ( m + 1 ) -> ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) = ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) |
| 18 |
17
|
fveq2d |
|- ( k = ( m + 1 ) -> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) = ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) ) |
| 19 |
18
|
breq1d |
|- ( k = ( m + 1 ) -> ( ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x <-> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x ) ) |
| 20 |
19
|
rspcv |
|- ( ( m + 1 ) e. ( ZZ>= ` m ) -> ( A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x -> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x ) ) |
| 21 |
13 14 15 20
|
4syl |
|- ( m e. ( ZZ>= ` j ) -> ( A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x -> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x ) ) |
| 22 |
21
|
adantld |
|- ( m e. ( ZZ>= ` j ) -> ( ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x ) ) |
| 23 |
22
|
ralimia |
|- ( A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> A. m e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x ) |
| 24 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
| 25 |
24 1
|
eleqtrdi |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 26 |
|
eluzelz |
|- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
| 27 |
25 26
|
syl |
|- ( ( ph /\ j e. Z ) -> j e. ZZ ) |
| 28 |
|
eluzp1m1 |
|- ( ( j e. ZZ /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( k - 1 ) e. ( ZZ>= ` j ) ) |
| 29 |
27 28
|
sylan |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( k - 1 ) e. ( ZZ>= ` j ) ) |
| 30 |
|
fveq2 |
|- ( m = ( k - 1 ) -> ( seq M ( + , F ) ` m ) = ( seq M ( + , F ) ` ( k - 1 ) ) ) |
| 31 |
|
fvoveq1 |
|- ( m = ( k - 1 ) -> ( seq M ( + , F ) ` ( m + 1 ) ) = ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) |
| 32 |
30 31
|
oveq12d |
|- ( m = ( k - 1 ) -> ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) = ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) |
| 33 |
32
|
fveq2d |
|- ( m = ( k - 1 ) -> ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) ) |
| 34 |
33
|
breq1d |
|- ( m = ( k - 1 ) -> ( ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x <-> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) < x ) ) |
| 35 |
34
|
rspcv |
|- ( ( k - 1 ) e. ( ZZ>= ` j ) -> ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x -> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) < x ) ) |
| 36 |
29 35
|
syl |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x -> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) < x ) ) |
| 37 |
1 2 5
|
serf |
|- ( ph -> seq M ( + , F ) : Z --> CC ) |
| 38 |
37
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> seq M ( + , F ) : Z --> CC ) |
| 39 |
1
|
uztrn2 |
|- ( ( j e. Z /\ ( k - 1 ) e. ( ZZ>= ` j ) ) -> ( k - 1 ) e. Z ) |
| 40 |
24 29 39
|
syl2an2r |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( k - 1 ) e. Z ) |
| 41 |
38 40
|
ffvelcdmd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( seq M ( + , F ) ` ( k - 1 ) ) e. CC ) |
| 42 |
1
|
uztrn2 |
|- ( ( ( j + 1 ) e. Z /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. Z ) |
| 43 |
12 42
|
sylan |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. Z ) |
| 44 |
38 43
|
ffvelcdmd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( seq M ( + , F ) ` k ) e. CC ) |
| 45 |
41 44
|
abssubd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` k ) ) ) = ( abs ` ( ( seq M ( + , F ) ` k ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) ) ) |
| 46 |
|
eluzelz |
|- ( k e. ( ZZ>= ` ( j + 1 ) ) -> k e. ZZ ) |
| 47 |
46
|
adantl |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. ZZ ) |
| 48 |
47
|
zcnd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. CC ) |
| 49 |
|
ax-1cn |
|- 1 e. CC |
| 50 |
|
npcan |
|- ( ( k e. CC /\ 1 e. CC ) -> ( ( k - 1 ) + 1 ) = k ) |
| 51 |
48 49 50
|
sylancl |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( k - 1 ) + 1 ) = k ) |
| 52 |
51
|
fveq2d |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) = ( seq M ( + , F ) ` k ) ) |
| 53 |
52
|
oveq2d |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) = ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` k ) ) ) |
| 54 |
53
|
fveq2d |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` k ) ) ) ) |
| 55 |
2
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> M e. ZZ ) |
| 56 |
|
eluzp1p1 |
|- ( j e. ( ZZ>= ` M ) -> ( j + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 57 |
25 56
|
syl |
|- ( ( ph /\ j e. Z ) -> ( j + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 58 |
|
eqid |
|- ( ZZ>= ` ( M + 1 ) ) = ( ZZ>= ` ( M + 1 ) ) |
| 59 |
58
|
uztrn2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` ( M + 1 ) ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. ( ZZ>= ` ( M + 1 ) ) ) |
| 60 |
57 59
|
sylan |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. ( ZZ>= ` ( M + 1 ) ) ) |
| 61 |
|
seqm1 |
|- ( ( M e. ZZ /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( + , F ) ` k ) = ( ( seq M ( + , F ) ` ( k - 1 ) ) + ( F ` k ) ) ) |
| 62 |
55 60 61
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( seq M ( + , F ) ` k ) = ( ( seq M ( + , F ) ` ( k - 1 ) ) + ( F ` k ) ) ) |
| 63 |
62
|
oveq1d |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( seq M ( + , F ) ` k ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) = ( ( ( seq M ( + , F ) ` ( k - 1 ) ) + ( F ` k ) ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) ) |
| 64 |
5
|
adantlr |
|- ( ( ( ph /\ j e. Z ) /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 65 |
43 64
|
syldan |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( F ` k ) e. CC ) |
| 66 |
41 65
|
pncan2d |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( ( seq M ( + , F ) ` ( k - 1 ) ) + ( F ` k ) ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) = ( F ` k ) ) |
| 67 |
63 66
|
eqtr2d |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( F ` k ) = ( ( seq M ( + , F ) ` k ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) ) |
| 68 |
67
|
fveq2d |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( abs ` ( F ` k ) ) = ( abs ` ( ( seq M ( + , F ) ` k ) - ( seq M ( + , F ) ` ( k - 1 ) ) ) ) ) |
| 69 |
45 54 68
|
3eqtr4d |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) = ( abs ` ( F ` k ) ) ) |
| 70 |
69
|
breq1d |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( abs ` ( ( seq M ( + , F ) ` ( k - 1 ) ) - ( seq M ( + , F ) ` ( ( k - 1 ) + 1 ) ) ) ) < x <-> ( abs ` ( F ` k ) ) < x ) ) |
| 71 |
36 70
|
sylibd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x -> ( abs ` ( F ` k ) ) < x ) ) |
| 72 |
71
|
ralrimdva |
|- ( ( ph /\ j e. Z ) -> ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` ( m + 1 ) ) ) ) < x -> A. k e. ( ZZ>= ` ( j + 1 ) ) ( abs ` ( F ` k ) ) < x ) ) |
| 73 |
23 72
|
syl5 |
|- ( ( ph /\ j e. Z ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> A. k e. ( ZZ>= ` ( j + 1 ) ) ( abs ` ( F ` k ) ) < x ) ) |
| 74 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( ZZ>= ` n ) = ( ZZ>= ` ( j + 1 ) ) ) |
| 75 |
74
|
raleqdv |
|- ( n = ( j + 1 ) -> ( A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x <-> A. k e. ( ZZ>= ` ( j + 1 ) ) ( abs ` ( F ` k ) ) < x ) ) |
| 76 |
75
|
rspcev |
|- ( ( ( j + 1 ) e. Z /\ A. k e. ( ZZ>= ` ( j + 1 ) ) ( abs ` ( F ` k ) ) < x ) -> E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) |
| 77 |
12 73 76
|
syl6an |
|- ( ( ph /\ j e. Z ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) ) |
| 78 |
77
|
rexlimdva |
|- ( ph -> ( E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) ) |
| 79 |
78
|
ralimdv |
|- ( ph -> ( A. x e. RR+ E. j e. Z A. m e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` m ) e. CC /\ A. k e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` m ) - ( seq M ( + , F ) ` k ) ) ) < x ) -> A. x e. RR+ E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) ) |
| 80 |
10 79
|
mpd |
|- ( ph -> A. x e. RR+ E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) |
| 81 |
|
eqidd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
| 82 |
1 2 3 81 5
|
clim0c |
|- ( ph -> ( F ~~> 0 <-> A. x e. RR+ E. n e. Z A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) < x ) ) |
| 83 |
80 82
|
mpbird |
|- ( ph -> F ~~> 0 ) |