Description: An infinite series of real numbers is a function from NN to RR . (Contributed by NM, 18-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | serf.1 | |- Z = ( ZZ>= ` M ) | |
| serf.2 | |- ( ph -> M e. ZZ ) | ||
| serfre.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) | ||
| Assertion | serfre | |- ( ph -> seq M ( + , F ) : Z --> RR ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | serf.1 | |- Z = ( ZZ>= ` M ) | |
| 2 | serf.2 | |- ( ph -> M e. ZZ ) | |
| 3 | serfre.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) | |
| 4 | readdcl | |- ( ( k e. RR /\ x e. RR ) -> ( k + x ) e. RR ) | |
| 5 | 4 | adantl | |- ( ( ph /\ ( k e. RR /\ x e. RR ) ) -> ( k + x ) e. RR ) | 
| 6 | 1 2 3 5 | seqf | |- ( ph -> seq M ( + , F ) : Z --> RR ) |