Description: An infinite series of real numbers is a function from NN to RR . (Contributed by NM, 18-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | serf.1 | |- Z = ( ZZ>= ` M ) |
|
serf.2 | |- ( ph -> M e. ZZ ) |
||
serfre.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
Assertion | serfre | |- ( ph -> seq M ( + , F ) : Z --> RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | serf.1 | |- Z = ( ZZ>= ` M ) |
|
2 | serf.2 | |- ( ph -> M e. ZZ ) |
|
3 | serfre.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
4 | readdcl | |- ( ( k e. RR /\ x e. RR ) -> ( k + x ) e. RR ) |
|
5 | 4 | adantl | |- ( ( ph /\ ( k e. RR /\ x e. RR ) ) -> ( k + x ) e. RR ) |
6 | 1 2 3 5 | seqf | |- ( ph -> seq M ( + , F ) : Z --> RR ) |