Metamath Proof Explorer


Theorem serfre

Description: An infinite series of real numbers is a function from NN to RR . (Contributed by NM, 18-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses serf.1
|- Z = ( ZZ>= ` M )
serf.2
|- ( ph -> M e. ZZ )
serfre.3
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR )
Assertion serfre
|- ( ph -> seq M ( + , F ) : Z --> RR )

Proof

Step Hyp Ref Expression
1 serf.1
 |-  Z = ( ZZ>= ` M )
2 serf.2
 |-  ( ph -> M e. ZZ )
3 serfre.3
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR )
4 readdcl
 |-  ( ( k e. RR /\ x e. RR ) -> ( k + x ) e. RR )
5 4 adantl
 |-  ( ( ph /\ ( k e. RR /\ x e. RR ) ) -> ( k + x ) e. RR )
6 1 2 3 5 seqf
 |-  ( ph -> seq M ( + , F ) : Z --> RR )