Step |
Hyp |
Ref |
Expression |
1 |
|
serge0.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
2 |
|
serge0.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
3 |
|
serle.3 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. RR ) |
4 |
|
serle.4 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) <_ ( G ` k ) ) |
5 |
|
fveq2 |
|- ( x = k -> ( G ` x ) = ( G ` k ) ) |
6 |
|
fveq2 |
|- ( x = k -> ( F ` x ) = ( F ` k ) ) |
7 |
5 6
|
oveq12d |
|- ( x = k -> ( ( G ` x ) - ( F ` x ) ) = ( ( G ` k ) - ( F ` k ) ) ) |
8 |
|
eqid |
|- ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) = ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) |
9 |
|
ovex |
|- ( ( G ` k ) - ( F ` k ) ) e. _V |
10 |
7 8 9
|
fvmpt |
|- ( k e. _V -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) ) |
11 |
10
|
elv |
|- ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) |
12 |
3 2
|
resubcld |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( G ` k ) - ( F ` k ) ) e. RR ) |
13 |
11 12
|
eqeltrid |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) e. RR ) |
14 |
3 2
|
subge0d |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( 0 <_ ( ( G ` k ) - ( F ` k ) ) <-> ( F ` k ) <_ ( G ` k ) ) ) |
15 |
4 14
|
mpbird |
|- ( ( ph /\ k e. ( M ... N ) ) -> 0 <_ ( ( G ` k ) - ( F ` k ) ) ) |
16 |
15 11
|
breqtrrdi |
|- ( ( ph /\ k e. ( M ... N ) ) -> 0 <_ ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) ) |
17 |
1 13 16
|
serge0 |
|- ( ph -> 0 <_ ( seq M ( + , ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ) ` N ) ) |
18 |
3
|
recnd |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) |
19 |
2
|
recnd |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
20 |
11
|
a1i |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) ) |
21 |
1 18 19 20
|
sersub |
|- ( ph -> ( seq M ( + , ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ) ` N ) = ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) ) |
22 |
17 21
|
breqtrd |
|- ( ph -> 0 <_ ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) ) |
23 |
|
readdcl |
|- ( ( k e. RR /\ x e. RR ) -> ( k + x ) e. RR ) |
24 |
23
|
adantl |
|- ( ( ph /\ ( k e. RR /\ x e. RR ) ) -> ( k + x ) e. RR ) |
25 |
1 3 24
|
seqcl |
|- ( ph -> ( seq M ( + , G ) ` N ) e. RR ) |
26 |
1 2 24
|
seqcl |
|- ( ph -> ( seq M ( + , F ) ` N ) e. RR ) |
27 |
25 26
|
subge0d |
|- ( ph -> ( 0 <_ ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) <-> ( seq M ( + , F ) ` N ) <_ ( seq M ( + , G ) ` N ) ) ) |
28 |
22 27
|
mpbid |
|- ( ph -> ( seq M ( + , F ) ` N ) <_ ( seq M ( + , G ) ` N ) ) |