| Step | Hyp | Ref | Expression | 
						
							| 1 |  | serge0.1 |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 2 |  | serge0.2 |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) | 
						
							| 3 |  | serle.3 |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. RR ) | 
						
							| 4 |  | serle.4 |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) <_ ( G ` k ) ) | 
						
							| 5 |  | fveq2 |  |-  ( x = k -> ( G ` x ) = ( G ` k ) ) | 
						
							| 6 |  | fveq2 |  |-  ( x = k -> ( F ` x ) = ( F ` k ) ) | 
						
							| 7 | 5 6 | oveq12d |  |-  ( x = k -> ( ( G ` x ) - ( F ` x ) ) = ( ( G ` k ) - ( F ` k ) ) ) | 
						
							| 8 |  | eqid |  |-  ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) = ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) | 
						
							| 9 |  | ovex |  |-  ( ( G ` k ) - ( F ` k ) ) e. _V | 
						
							| 10 | 7 8 9 | fvmpt |  |-  ( k e. _V -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) ) | 
						
							| 11 | 10 | elv |  |-  ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) | 
						
							| 12 | 3 2 | resubcld |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( ( G ` k ) - ( F ` k ) ) e. RR ) | 
						
							| 13 | 11 12 | eqeltrid |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) e. RR ) | 
						
							| 14 | 3 2 | subge0d |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( 0 <_ ( ( G ` k ) - ( F ` k ) ) <-> ( F ` k ) <_ ( G ` k ) ) ) | 
						
							| 15 | 4 14 | mpbird |  |-  ( ( ph /\ k e. ( M ... N ) ) -> 0 <_ ( ( G ` k ) - ( F ` k ) ) ) | 
						
							| 16 | 15 11 | breqtrrdi |  |-  ( ( ph /\ k e. ( M ... N ) ) -> 0 <_ ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) ) | 
						
							| 17 | 1 13 16 | serge0 |  |-  ( ph -> 0 <_ ( seq M ( + , ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ) ` N ) ) | 
						
							| 18 | 3 | recnd |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) | 
						
							| 19 | 2 | recnd |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) | 
						
							| 20 | 11 | a1i |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) ) | 
						
							| 21 | 1 18 19 20 | sersub |  |-  ( ph -> ( seq M ( + , ( x e. _V |-> ( ( G ` x ) - ( F ` x ) ) ) ) ` N ) = ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) ) | 
						
							| 22 | 17 21 | breqtrd |  |-  ( ph -> 0 <_ ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) ) | 
						
							| 23 |  | readdcl |  |-  ( ( k e. RR /\ x e. RR ) -> ( k + x ) e. RR ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ph /\ ( k e. RR /\ x e. RR ) ) -> ( k + x ) e. RR ) | 
						
							| 25 | 1 3 24 | seqcl |  |-  ( ph -> ( seq M ( + , G ) ` N ) e. RR ) | 
						
							| 26 | 1 2 24 | seqcl |  |-  ( ph -> ( seq M ( + , F ) ` N ) e. RR ) | 
						
							| 27 | 25 26 | subge0d |  |-  ( ph -> ( 0 <_ ( ( seq M ( + , G ) ` N ) - ( seq M ( + , F ) ` N ) ) <-> ( seq M ( + , F ) ` N ) <_ ( seq M ( + , G ) ` N ) ) ) | 
						
							| 28 | 22 27 | mpbid |  |-  ( ph -> ( seq M ( + , F ) ` N ) <_ ( seq M ( + , G ) ` N ) ) |