Step |
Hyp |
Ref |
Expression |
1 |
|
sermono.1 |
|- ( ph -> K e. ( ZZ>= ` M ) ) |
2 |
|
sermono.2 |
|- ( ph -> N e. ( ZZ>= ` K ) ) |
3 |
|
sermono.3 |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. RR ) |
4 |
|
sermono.4 |
|- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> 0 <_ ( F ` x ) ) |
5 |
|
elfzuz |
|- ( k e. ( K ... N ) -> k e. ( ZZ>= ` K ) ) |
6 |
|
uztrn |
|- ( ( k e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` M ) ) -> k e. ( ZZ>= ` M ) ) |
7 |
5 1 6
|
syl2anr |
|- ( ( ph /\ k e. ( K ... N ) ) -> k e. ( ZZ>= ` M ) ) |
8 |
|
elfzuz3 |
|- ( k e. ( K ... N ) -> N e. ( ZZ>= ` k ) ) |
9 |
8
|
adantl |
|- ( ( ph /\ k e. ( K ... N ) ) -> N e. ( ZZ>= ` k ) ) |
10 |
|
fzss2 |
|- ( N e. ( ZZ>= ` k ) -> ( M ... k ) C_ ( M ... N ) ) |
11 |
9 10
|
syl |
|- ( ( ph /\ k e. ( K ... N ) ) -> ( M ... k ) C_ ( M ... N ) ) |
12 |
11
|
sselda |
|- ( ( ( ph /\ k e. ( K ... N ) ) /\ x e. ( M ... k ) ) -> x e. ( M ... N ) ) |
13 |
3
|
adantlr |
|- ( ( ( ph /\ k e. ( K ... N ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. RR ) |
14 |
12 13
|
syldan |
|- ( ( ( ph /\ k e. ( K ... N ) ) /\ x e. ( M ... k ) ) -> ( F ` x ) e. RR ) |
15 |
|
readdcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
16 |
15
|
adantl |
|- ( ( ( ph /\ k e. ( K ... N ) ) /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) |
17 |
7 14 16
|
seqcl |
|- ( ( ph /\ k e. ( K ... N ) ) -> ( seq M ( + , F ) ` k ) e. RR ) |
18 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( F ` x ) = ( F ` ( k + 1 ) ) ) |
19 |
18
|
breq2d |
|- ( x = ( k + 1 ) -> ( 0 <_ ( F ` x ) <-> 0 <_ ( F ` ( k + 1 ) ) ) ) |
20 |
4
|
ralrimiva |
|- ( ph -> A. x e. ( ( K + 1 ) ... N ) 0 <_ ( F ` x ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> A. x e. ( ( K + 1 ) ... N ) 0 <_ ( F ` x ) ) |
22 |
|
simpr |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> k e. ( K ... ( N - 1 ) ) ) |
23 |
1
|
adantr |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> K e. ( ZZ>= ` M ) ) |
24 |
|
eluzelz |
|- ( K e. ( ZZ>= ` M ) -> K e. ZZ ) |
25 |
23 24
|
syl |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> K e. ZZ ) |
26 |
2
|
adantr |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` K ) ) |
27 |
|
eluzelz |
|- ( N e. ( ZZ>= ` K ) -> N e. ZZ ) |
28 |
26 27
|
syl |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> N e. ZZ ) |
29 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
30 |
28 29
|
syl |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( N - 1 ) e. ZZ ) |
31 |
|
elfzelz |
|- ( k e. ( K ... ( N - 1 ) ) -> k e. ZZ ) |
32 |
31
|
adantl |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> k e. ZZ ) |
33 |
|
1zzd |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> 1 e. ZZ ) |
34 |
|
fzaddel |
|- ( ( ( K e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( k e. ZZ /\ 1 e. ZZ ) ) -> ( k e. ( K ... ( N - 1 ) ) <-> ( k + 1 ) e. ( ( K + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) |
35 |
25 30 32 33 34
|
syl22anc |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k e. ( K ... ( N - 1 ) ) <-> ( k + 1 ) e. ( ( K + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) |
36 |
22 35
|
mpbid |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( ( K + 1 ) ... ( ( N - 1 ) + 1 ) ) ) |
37 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
38 |
|
ax-1cn |
|- 1 e. CC |
39 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
40 |
37 38 39
|
sylancl |
|- ( N e. ZZ -> ( ( N - 1 ) + 1 ) = N ) |
41 |
28 40
|
syl |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
42 |
41
|
oveq2d |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( ( K + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( K + 1 ) ... N ) ) |
43 |
36 42
|
eleqtrd |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( ( K + 1 ) ... N ) ) |
44 |
19 21 43
|
rspcdva |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> 0 <_ ( F ` ( k + 1 ) ) ) |
45 |
|
fzelp1 |
|- ( k e. ( K ... ( N - 1 ) ) -> k e. ( K ... ( ( N - 1 ) + 1 ) ) ) |
46 |
45
|
adantl |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> k e. ( K ... ( ( N - 1 ) + 1 ) ) ) |
47 |
41
|
oveq2d |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( K ... ( ( N - 1 ) + 1 ) ) = ( K ... N ) ) |
48 |
46 47
|
eleqtrd |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> k e. ( K ... N ) ) |
49 |
48 17
|
syldan |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( seq M ( + , F ) ` k ) e. RR ) |
50 |
18
|
eleq1d |
|- ( x = ( k + 1 ) -> ( ( F ` x ) e. RR <-> ( F ` ( k + 1 ) ) e. RR ) ) |
51 |
3
|
ralrimiva |
|- ( ph -> A. x e. ( M ... N ) ( F ` x ) e. RR ) |
52 |
51
|
adantr |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> A. x e. ( M ... N ) ( F ` x ) e. RR ) |
53 |
|
fzss1 |
|- ( K e. ( ZZ>= ` M ) -> ( K ... N ) C_ ( M ... N ) ) |
54 |
23 53
|
syl |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( K ... N ) C_ ( M ... N ) ) |
55 |
|
fzp1elp1 |
|- ( k e. ( K ... ( N - 1 ) ) -> ( k + 1 ) e. ( K ... ( ( N - 1 ) + 1 ) ) ) |
56 |
55
|
adantl |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( K ... ( ( N - 1 ) + 1 ) ) ) |
57 |
56 47
|
eleqtrd |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( K ... N ) ) |
58 |
54 57
|
sseldd |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( M ... N ) ) |
59 |
50 52 58
|
rspcdva |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( F ` ( k + 1 ) ) e. RR ) |
60 |
49 59
|
addge01d |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( 0 <_ ( F ` ( k + 1 ) ) <-> ( seq M ( + , F ) ` k ) <_ ( ( seq M ( + , F ) ` k ) + ( F ` ( k + 1 ) ) ) ) ) |
61 |
44 60
|
mpbid |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( seq M ( + , F ) ` k ) <_ ( ( seq M ( + , F ) ` k ) + ( F ` ( k + 1 ) ) ) ) |
62 |
48 7
|
syldan |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> k e. ( ZZ>= ` M ) ) |
63 |
|
seqp1 |
|- ( k e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( k + 1 ) ) = ( ( seq M ( + , F ) ` k ) + ( F ` ( k + 1 ) ) ) ) |
64 |
62 63
|
syl |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( seq M ( + , F ) ` ( k + 1 ) ) = ( ( seq M ( + , F ) ` k ) + ( F ` ( k + 1 ) ) ) ) |
65 |
61 64
|
breqtrrd |
|- ( ( ph /\ k e. ( K ... ( N - 1 ) ) ) -> ( seq M ( + , F ) ` k ) <_ ( seq M ( + , F ) ` ( k + 1 ) ) ) |
66 |
2 17 65
|
monoord |
|- ( ph -> ( seq M ( + , F ) ` K ) <_ ( seq M ( + , F ) ` N ) ) |