| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcsetc1o.1 |
|- .1. = ( SetCat ` 1o ) |
| 2 |
|
df-ot |
|- <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. = <. <. <. (/) , (/) >. , (/) >. , { <. (/) , (/) , (/) >. } >. |
| 3 |
2
|
sneqi |
|- { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } = { <. <. <. (/) , (/) >. , (/) >. , { <. (/) , (/) , (/) >. } >. } |
| 4 |
|
opex |
|- <. (/) , (/) >. e. _V |
| 5 |
|
0ex |
|- (/) e. _V |
| 6 |
|
snex |
|- { <. (/) , (/) , (/) >. } e. _V |
| 7 |
|
df1o2 |
|- 1o = { (/) } |
| 8 |
7
|
fveq2i |
|- ( SetCat ` 1o ) = ( SetCat ` { (/) } ) |
| 9 |
1 8
|
eqtri |
|- .1. = ( SetCat ` { (/) } ) |
| 10 |
|
snex |
|- { (/) } e. _V |
| 11 |
10
|
a1i |
|- ( T. -> { (/) } e. _V ) |
| 12 |
|
eqid |
|- ( comp ` .1. ) = ( comp ` .1. ) |
| 13 |
9 11 12
|
setccofval |
|- ( T. -> ( comp ` .1. ) = ( v e. ( { (/) } X. { (/) } ) , z e. { (/) } |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) ) |
| 14 |
13
|
mptru |
|- ( comp ` .1. ) = ( v e. ( { (/) } X. { (/) } ) , z e. { (/) } |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) |
| 15 |
5 5
|
xpsn |
|- ( { (/) } X. { (/) } ) = { <. (/) , (/) >. } |
| 16 |
|
eqid |
|- { (/) } = { (/) } |
| 17 |
|
eqid |
|- ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) = ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) |
| 18 |
15 16 17
|
mpoeq123i |
|- ( v e. ( { (/) } X. { (/) } ) , z e. { (/) } |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) = ( v e. { <. (/) , (/) >. } , z e. { (/) } |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) |
| 19 |
14 18
|
eqtri |
|- ( comp ` .1. ) = ( v e. { <. (/) , (/) >. } , z e. { (/) } |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) |
| 20 |
5 5
|
op2ndd |
|- ( v = <. (/) , (/) >. -> ( 2nd ` v ) = (/) ) |
| 21 |
20
|
oveq2d |
|- ( v = <. (/) , (/) >. -> ( z ^m ( 2nd ` v ) ) = ( z ^m (/) ) ) |
| 22 |
5 5
|
op1std |
|- ( v = <. (/) , (/) >. -> ( 1st ` v ) = (/) ) |
| 23 |
20 22
|
oveq12d |
|- ( v = <. (/) , (/) >. -> ( ( 2nd ` v ) ^m ( 1st ` v ) ) = ( (/) ^m (/) ) ) |
| 24 |
|
0map0sn0 |
|- ( (/) ^m (/) ) = { (/) } |
| 25 |
23 24
|
eqtrdi |
|- ( v = <. (/) , (/) >. -> ( ( 2nd ` v ) ^m ( 1st ` v ) ) = { (/) } ) |
| 26 |
|
eqidd |
|- ( v = <. (/) , (/) >. -> ( g o. f ) = ( g o. f ) ) |
| 27 |
21 25 26
|
mpoeq123dv |
|- ( v = <. (/) , (/) >. -> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) = ( g e. ( z ^m (/) ) , f e. { (/) } |-> ( g o. f ) ) ) |
| 28 |
|
oveq1 |
|- ( z = (/) -> ( z ^m (/) ) = ( (/) ^m (/) ) ) |
| 29 |
28 24
|
eqtrdi |
|- ( z = (/) -> ( z ^m (/) ) = { (/) } ) |
| 30 |
|
eqidd |
|- ( z = (/) -> { (/) } = { (/) } ) |
| 31 |
|
eqidd |
|- ( z = (/) -> ( g o. f ) = ( g o. f ) ) |
| 32 |
29 30 31
|
mpoeq123dv |
|- ( z = (/) -> ( g e. ( z ^m (/) ) , f e. { (/) } |-> ( g o. f ) ) = ( g e. { (/) } , f e. { (/) } |-> ( g o. f ) ) ) |
| 33 |
|
eqid |
|- ( g e. { (/) } , f e. { (/) } |-> ( g o. f ) ) = ( g e. { (/) } , f e. { (/) } |-> ( g o. f ) ) |
| 34 |
|
coeq1 |
|- ( g = (/) -> ( g o. f ) = ( (/) o. f ) ) |
| 35 |
|
co01 |
|- ( (/) o. f ) = (/) |
| 36 |
34 35
|
eqtrdi |
|- ( g = (/) -> ( g o. f ) = (/) ) |
| 37 |
|
eqidd |
|- ( f = (/) -> (/) = (/) ) |
| 38 |
33 36 37
|
mposn |
|- ( ( (/) e. _V /\ (/) e. _V /\ (/) e. _V ) -> ( g e. { (/) } , f e. { (/) } |-> ( g o. f ) ) = { <. <. (/) , (/) >. , (/) >. } ) |
| 39 |
5 5 5 38
|
mp3an |
|- ( g e. { (/) } , f e. { (/) } |-> ( g o. f ) ) = { <. <. (/) , (/) >. , (/) >. } |
| 40 |
32 39
|
eqtrdi |
|- ( z = (/) -> ( g e. ( z ^m (/) ) , f e. { (/) } |-> ( g o. f ) ) = { <. <. (/) , (/) >. , (/) >. } ) |
| 41 |
|
df-ot |
|- <. (/) , (/) , (/) >. = <. <. (/) , (/) >. , (/) >. |
| 42 |
41
|
sneqi |
|- { <. (/) , (/) , (/) >. } = { <. <. (/) , (/) >. , (/) >. } |
| 43 |
40 42
|
eqtr4di |
|- ( z = (/) -> ( g e. ( z ^m (/) ) , f e. { (/) } |-> ( g o. f ) ) = { <. (/) , (/) , (/) >. } ) |
| 44 |
19 27 43
|
mposn |
|- ( ( <. (/) , (/) >. e. _V /\ (/) e. _V /\ { <. (/) , (/) , (/) >. } e. _V ) -> ( comp ` .1. ) = { <. <. <. (/) , (/) >. , (/) >. , { <. (/) , (/) , (/) >. } >. } ) |
| 45 |
4 5 6 44
|
mp3an |
|- ( comp ` .1. ) = { <. <. <. (/) , (/) >. , (/) >. , { <. (/) , (/) , (/) >. } >. } |
| 46 |
3 45
|
eqtr4i |
|- { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } = ( comp ` .1. ) |