Metamath Proof Explorer


Theorem setc1oid

Description: The identity morphism of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Hypotheses funcsetc1o.1
|- .1. = ( SetCat ` 1o )
setc1oid.i
|- I = ( Id ` .1. )
Assertion setc1oid
|- ( I ` (/) ) = (/)

Proof

Step Hyp Ref Expression
1 funcsetc1o.1
 |-  .1. = ( SetCat ` 1o )
2 setc1oid.i
 |-  I = ( Id ` .1. )
3 1oex
 |-  1o e. _V
4 3 a1i
 |-  ( T. -> 1o e. _V )
5 0lt1o
 |-  (/) e. 1o
6 5 a1i
 |-  ( T. -> (/) e. 1o )
7 1 2 4 6 setcid
 |-  ( T. -> ( I ` (/) ) = ( _I |` (/) ) )
8 7 mptru
 |-  ( I ` (/) ) = ( _I |` (/) )
9 res0
 |-  ( _I |` (/) ) = (/)
10 8 9 eqtri
 |-  ( I ` (/) ) = (/)