Metamath Proof Explorer


Theorem setc2obas

Description: (/) and 1o are distinct objects in ( SetCat2o ) . This combined with setc2ohom demonstrates that the category does not have pairwise disjoint hom-sets. See also df-cat and cat1 . (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses setc2ohom.c
|- C = ( SetCat ` 2o )
setc2obas.b
|- B = ( Base ` C )
Assertion setc2obas
|- ( (/) e. B /\ 1o e. B /\ 1o =/= (/) )

Proof

Step Hyp Ref Expression
1 setc2ohom.c
 |-  C = ( SetCat ` 2o )
2 setc2obas.b
 |-  B = ( Base ` C )
3 0ex
 |-  (/) e. _V
4 3 prid1
 |-  (/) e. { (/) , 1o }
5 2oex
 |-  2o e. _V
6 5 a1i
 |-  ( T. -> 2o e. _V )
7 1 6 setcbas
 |-  ( T. -> 2o = ( Base ` C ) )
8 7 mptru
 |-  2o = ( Base ` C )
9 df2o3
 |-  2o = { (/) , 1o }
10 2 8 9 3eqtr2i
 |-  B = { (/) , 1o }
11 4 10 eleqtrri
 |-  (/) e. B
12 1oex
 |-  1o e. _V
13 12 prid2
 |-  1o e. { (/) , 1o }
14 13 10 eleqtrri
 |-  1o e. B
15 1n0
 |-  1o =/= (/)
16 11 14 15 3pm3.2i
 |-  ( (/) e. B /\ 1o e. B /\ 1o =/= (/) )