Description: (/) and 1o are distinct objects in ( SetCat2o ) . This combined with setc2ohom demonstrates that the category does not have pairwise disjoint hom-sets. See also df-cat and cat1 . (Contributed by Zhi Wang, 24-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | setc2ohom.c | |- C = ( SetCat ` 2o ) |
|
setc2obas.b | |- B = ( Base ` C ) |
||
Assertion | setc2obas | |- ( (/) e. B /\ 1o e. B /\ 1o =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setc2ohom.c | |- C = ( SetCat ` 2o ) |
|
2 | setc2obas.b | |- B = ( Base ` C ) |
|
3 | 0ex | |- (/) e. _V |
|
4 | 3 | prid1 | |- (/) e. { (/) , 1o } |
5 | 2oex | |- 2o e. _V |
|
6 | 5 | a1i | |- ( T. -> 2o e. _V ) |
7 | 1 6 | setcbas | |- ( T. -> 2o = ( Base ` C ) ) |
8 | 7 | mptru | |- 2o = ( Base ` C ) |
9 | df2o3 | |- 2o = { (/) , 1o } |
|
10 | 2 8 9 | 3eqtr2i | |- B = { (/) , 1o } |
11 | 4 10 | eleqtrri | |- (/) e. B |
12 | 1oex | |- 1o e. _V |
|
13 | 12 | prid2 | |- 1o e. { (/) , 1o } |
14 | 13 10 | eleqtrri | |- 1o e. B |
15 | 1n0 | |- 1o =/= (/) |
|
16 | 11 14 15 | 3pm3.2i | |- ( (/) e. B /\ 1o e. B /\ 1o =/= (/) ) |