Metamath Proof Explorer


Theorem setc2othin

Description: The category ( SetCat2o ) is thin. A special case of setcthin . (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Assertion setc2othin
|- ( SetCat ` 2o ) e. ThinCat

Proof

Step Hyp Ref Expression
1 eqidd
 |-  ( T. -> ( SetCat ` 2o ) = ( SetCat ` 2o ) )
2 2oex
 |-  2o e. _V
3 2 a1i
 |-  ( T. -> 2o e. _V )
4 elpri
 |-  ( x e. { (/) , { (/) } } -> ( x = (/) \/ x = { (/) } ) )
5 0ex
 |-  (/) e. _V
6 sneq
 |-  ( y = (/) -> { y } = { (/) } )
7 6 eqeq2d
 |-  ( y = (/) -> ( x = { y } <-> x = { (/) } ) )
8 5 7 spcev
 |-  ( x = { (/) } -> E. y x = { y } )
9 8 orim2i
 |-  ( ( x = (/) \/ x = { (/) } ) -> ( x = (/) \/ E. y x = { y } ) )
10 mo0sn
 |-  ( E* z z e. x <-> ( x = (/) \/ E. y x = { y } ) )
11 10 biimpri
 |-  ( ( x = (/) \/ E. y x = { y } ) -> E* z z e. x )
12 4 9 11 3syl
 |-  ( x e. { (/) , { (/) } } -> E* z z e. x )
13 df2o2
 |-  2o = { (/) , { (/) } }
14 12 13 eleq2s
 |-  ( x e. 2o -> E* z z e. x )
15 14 rgen
 |-  A. x e. 2o E* z z e. x
16 15 a1i
 |-  ( T. -> A. x e. 2o E* z z e. x )
17 1 3 16 setcthin
 |-  ( T. -> ( SetCat ` 2o ) e. ThinCat )
18 17 mptru
 |-  ( SetCat ` 2o ) e. ThinCat