Step |
Hyp |
Ref |
Expression |
1 |
|
setcbas.c |
|- C = ( SetCat ` U ) |
2 |
|
setcbas.u |
|- ( ph -> U e. V ) |
3 |
|
catstr |
|- { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } Struct <. 1 , ; 1 5 >. |
4 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
5 |
|
snsstp1 |
|- { <. ( Base ` ndx ) , U >. } C_ { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } |
6 |
3 4 5
|
strfv |
|- ( U e. V -> U = ( Base ` { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) ) |
7 |
2 6
|
syl |
|- ( ph -> U = ( Base ` { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) ) |
8 |
|
eqidd |
|- ( ph -> ( x e. U , y e. U |-> ( y ^m x ) ) = ( x e. U , y e. U |-> ( y ^m x ) ) ) |
9 |
|
eqidd |
|- ( ph -> ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) = ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) ) |
10 |
1 2 8 9
|
setcval |
|- ( ph -> C = { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) |
11 |
10
|
fveq2d |
|- ( ph -> ( Base ` C ) = ( Base ` { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) ) |
12 |
7 11
|
eqtr4d |
|- ( ph -> U = ( Base ` C ) ) |