Description: The category of sets is a category. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | setccat.c | |- C = ( SetCat ` U ) |
|
Assertion | setccat | |- ( U e. V -> C e. Cat ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setccat.c | |- C = ( SetCat ` U ) |
|
2 | 1 | setccatid | |- ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. U |-> ( _I |` x ) ) ) ) |
3 | 2 | simpld | |- ( U e. V -> C e. Cat ) |