| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setcbas.c |
|- C = ( SetCat ` U ) |
| 2 |
|
setcbas.u |
|- ( ph -> U e. V ) |
| 3 |
|
setcco.o |
|- .x. = ( comp ` C ) |
| 4 |
|
setcco.x |
|- ( ph -> X e. U ) |
| 5 |
|
setcco.y |
|- ( ph -> Y e. U ) |
| 6 |
|
setcco.z |
|- ( ph -> Z e. U ) |
| 7 |
|
setcco.f |
|- ( ph -> F : X --> Y ) |
| 8 |
|
setcco.g |
|- ( ph -> G : Y --> Z ) |
| 9 |
1 2 3
|
setccofval |
|- ( ph -> .x. = ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) ) |
| 10 |
|
simprr |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> z = Z ) |
| 11 |
|
simprl |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> v = <. X , Y >. ) |
| 12 |
11
|
fveq2d |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` v ) = ( 2nd ` <. X , Y >. ) ) |
| 13 |
|
op2ndg |
|- ( ( X e. U /\ Y e. U ) -> ( 2nd ` <. X , Y >. ) = Y ) |
| 14 |
4 5 13
|
syl2anc |
|- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` <. X , Y >. ) = Y ) |
| 16 |
12 15
|
eqtrd |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` v ) = Y ) |
| 17 |
10 16
|
oveq12d |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( z ^m ( 2nd ` v ) ) = ( Z ^m Y ) ) |
| 18 |
11
|
fveq2d |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 1st ` v ) = ( 1st ` <. X , Y >. ) ) |
| 19 |
|
op1stg |
|- ( ( X e. U /\ Y e. U ) -> ( 1st ` <. X , Y >. ) = X ) |
| 20 |
4 5 19
|
syl2anc |
|- ( ph -> ( 1st ` <. X , Y >. ) = X ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 1st ` <. X , Y >. ) = X ) |
| 22 |
18 21
|
eqtrd |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 1st ` v ) = X ) |
| 23 |
16 22
|
oveq12d |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( ( 2nd ` v ) ^m ( 1st ` v ) ) = ( Y ^m X ) ) |
| 24 |
|
eqidd |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( g o. f ) = ( g o. f ) ) |
| 25 |
17 23 24
|
mpoeq123dv |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) = ( g e. ( Z ^m Y ) , f e. ( Y ^m X ) |-> ( g o. f ) ) ) |
| 26 |
4 5
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( U X. U ) ) |
| 27 |
|
ovex |
|- ( Z ^m Y ) e. _V |
| 28 |
|
ovex |
|- ( Y ^m X ) e. _V |
| 29 |
27 28
|
mpoex |
|- ( g e. ( Z ^m Y ) , f e. ( Y ^m X ) |-> ( g o. f ) ) e. _V |
| 30 |
29
|
a1i |
|- ( ph -> ( g e. ( Z ^m Y ) , f e. ( Y ^m X ) |-> ( g o. f ) ) e. _V ) |
| 31 |
9 25 26 6 30
|
ovmpod |
|- ( ph -> ( <. X , Y >. .x. Z ) = ( g e. ( Z ^m Y ) , f e. ( Y ^m X ) |-> ( g o. f ) ) ) |
| 32 |
|
simprl |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> g = G ) |
| 33 |
|
simprr |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> f = F ) |
| 34 |
32 33
|
coeq12d |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( g o. f ) = ( G o. F ) ) |
| 35 |
6 5
|
elmapd |
|- ( ph -> ( G e. ( Z ^m Y ) <-> G : Y --> Z ) ) |
| 36 |
8 35
|
mpbird |
|- ( ph -> G e. ( Z ^m Y ) ) |
| 37 |
5 4
|
elmapd |
|- ( ph -> ( F e. ( Y ^m X ) <-> F : X --> Y ) ) |
| 38 |
7 37
|
mpbird |
|- ( ph -> F e. ( Y ^m X ) ) |
| 39 |
|
coexg |
|- ( ( G e. ( Z ^m Y ) /\ F e. ( Y ^m X ) ) -> ( G o. F ) e. _V ) |
| 40 |
36 38 39
|
syl2anc |
|- ( ph -> ( G o. F ) e. _V ) |
| 41 |
31 34 36 38 40
|
ovmpod |
|- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o. F ) ) |