| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setcbas.c |
|- C = ( SetCat ` U ) |
| 2 |
|
setcbas.u |
|- ( ph -> U e. V ) |
| 3 |
|
setcco.o |
|- .x. = ( comp ` C ) |
| 4 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 5 |
1 2 4
|
setchomfval |
|- ( ph -> ( Hom ` C ) = ( x e. U , y e. U |-> ( y ^m x ) ) ) |
| 6 |
|
eqidd |
|- ( ph -> ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) = ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) ) |
| 7 |
1 2 5 6
|
setcval |
|- ( ph -> C = { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( Hom ` C ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) |
| 8 |
|
catstr |
|- { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( Hom ` C ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } Struct <. 1 , ; 1 5 >. |
| 9 |
|
ccoid |
|- comp = Slot ( comp ` ndx ) |
| 10 |
|
snsstp3 |
|- { <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } C_ { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( Hom ` C ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } |
| 11 |
2 2
|
xpexd |
|- ( ph -> ( U X. U ) e. _V ) |
| 12 |
|
mpoexga |
|- ( ( ( U X. U ) e. _V /\ U e. V ) -> ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) e. _V ) |
| 13 |
11 2 12
|
syl2anc |
|- ( ph -> ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) e. _V ) |
| 14 |
7 8 9 10 13 3
|
strfv3 |
|- ( ph -> .x. = ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) ) |