Step |
Hyp |
Ref |
Expression |
1 |
|
setcbas.c |
|- C = ( SetCat ` U ) |
2 |
|
setcbas.u |
|- ( ph -> U e. V ) |
3 |
|
setchomfval.h |
|- H = ( Hom ` C ) |
4 |
|
setchom.x |
|- ( ph -> X e. U ) |
5 |
|
setchom.y |
|- ( ph -> Y e. U ) |
6 |
1 2 3
|
setchomfval |
|- ( ph -> H = ( x e. U , y e. U |-> ( y ^m x ) ) ) |
7 |
|
simprr |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
8 |
|
simprl |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
9 |
7 8
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( y ^m x ) = ( Y ^m X ) ) |
10 |
|
ovexd |
|- ( ph -> ( Y ^m X ) e. _V ) |
11 |
6 9 4 5 10
|
ovmpod |
|- ( ph -> ( X H Y ) = ( Y ^m X ) ) |