| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setccat.c |
|- C = ( SetCat ` U ) |
| 2 |
|
setcid.o |
|- .1. = ( Id ` C ) |
| 3 |
|
setcid.u |
|- ( ph -> U e. V ) |
| 4 |
|
setcid.x |
|- ( ph -> X e. U ) |
| 5 |
1
|
setccatid |
|- ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. U |-> ( _I |` x ) ) ) ) |
| 6 |
3 5
|
syl |
|- ( ph -> ( C e. Cat /\ ( Id ` C ) = ( x e. U |-> ( _I |` x ) ) ) ) |
| 7 |
6
|
simprd |
|- ( ph -> ( Id ` C ) = ( x e. U |-> ( _I |` x ) ) ) |
| 8 |
2 7
|
eqtrid |
|- ( ph -> .1. = ( x e. U |-> ( _I |` x ) ) ) |
| 9 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
| 10 |
9
|
reseq2d |
|- ( ( ph /\ x = X ) -> ( _I |` x ) = ( _I |` X ) ) |
| 11 |
4
|
resiexd |
|- ( ph -> ( _I |` X ) e. _V ) |
| 12 |
8 10 4 11
|
fvmptd |
|- ( ph -> ( .1. ` X ) = ( _I |` X ) ) |