| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							setcmon.c | 
							 |-  C = ( SetCat ` U )  | 
						
						
							| 2 | 
							
								
							 | 
							setcmon.u | 
							 |-  ( ph -> U e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							setcmon.x | 
							 |-  ( ph -> X e. U )  | 
						
						
							| 4 | 
							
								
							 | 
							setcmon.y | 
							 |-  ( ph -> Y e. U )  | 
						
						
							| 5 | 
							
								
							 | 
							setciso.n | 
							 |-  I = ( Iso ` C )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Inv ` C ) = ( Inv ` C )  | 
						
						
							| 8 | 
							
								1
							 | 
							setccat | 
							 |-  ( U e. V -> C e. Cat )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							syl | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 10 | 
							
								1 2
							 | 
							setcbas | 
							 |-  ( ph -> U = ( Base ` C ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							eleqtrd | 
							 |-  ( ph -> X e. ( Base ` C ) )  | 
						
						
							| 12 | 
							
								4 10
							 | 
							eleqtrd | 
							 |-  ( ph -> Y e. ( Base ` C ) )  | 
						
						
							| 13 | 
							
								6 7 9 11 12 5
							 | 
							isoval | 
							 |-  ( ph -> ( X I Y ) = dom ( X ( Inv ` C ) Y ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eleq2d | 
							 |-  ( ph -> ( F e. ( X I Y ) <-> F e. dom ( X ( Inv ` C ) Y ) ) )  | 
						
						
							| 15 | 
							
								6 7 9 11 12
							 | 
							invfun | 
							 |-  ( ph -> Fun ( X ( Inv ` C ) Y ) )  | 
						
						
							| 16 | 
							
								
							 | 
							funfvbrb | 
							 |-  ( Fun ( X ( Inv ` C ) Y ) -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							 |-  ( ph -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) )  | 
						
						
							| 18 | 
							
								1 2 3 4 7
							 | 
							setcinv | 
							 |-  ( ph -> ( F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) <-> ( F : X -1-1-onto-> Y /\ ( ( X ( Inv ` C ) Y ) ` F ) = `' F ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpl | 
							 |-  ( ( F : X -1-1-onto-> Y /\ ( ( X ( Inv ` C ) Y ) ` F ) = `' F ) -> F : X -1-1-onto-> Y )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							biimtrdi | 
							 |-  ( ph -> ( F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) -> F : X -1-1-onto-> Y ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							sylbid | 
							 |-  ( ph -> ( F e. dom ( X ( Inv ` C ) Y ) -> F : X -1-1-onto-> Y ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  `' F = `' F  | 
						
						
							| 23 | 
							
								1 2 3 4 7
							 | 
							setcinv | 
							 |-  ( ph -> ( F ( X ( Inv ` C ) Y ) `' F <-> ( F : X -1-1-onto-> Y /\ `' F = `' F ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							funrel | 
							 |-  ( Fun ( X ( Inv ` C ) Y ) -> Rel ( X ( Inv ` C ) Y ) )  | 
						
						
							| 25 | 
							
								15 24
							 | 
							syl | 
							 |-  ( ph -> Rel ( X ( Inv ` C ) Y ) )  | 
						
						
							| 26 | 
							
								
							 | 
							releldm | 
							 |-  ( ( Rel ( X ( Inv ` C ) Y ) /\ F ( X ( Inv ` C ) Y ) `' F ) -> F e. dom ( X ( Inv ` C ) Y ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							ex | 
							 |-  ( Rel ( X ( Inv ` C ) Y ) -> ( F ( X ( Inv ` C ) Y ) `' F -> F e. dom ( X ( Inv ` C ) Y ) ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							syl | 
							 |-  ( ph -> ( F ( X ( Inv ` C ) Y ) `' F -> F e. dom ( X ( Inv ` C ) Y ) ) )  | 
						
						
							| 29 | 
							
								23 28
							 | 
							sylbird | 
							 |-  ( ph -> ( ( F : X -1-1-onto-> Y /\ `' F = `' F ) -> F e. dom ( X ( Inv ` C ) Y ) ) )  | 
						
						
							| 30 | 
							
								22 29
							 | 
							mpan2i | 
							 |-  ( ph -> ( F : X -1-1-onto-> Y -> F e. dom ( X ( Inv ` C ) Y ) ) )  | 
						
						
							| 31 | 
							
								21 30
							 | 
							impbid | 
							 |-  ( ph -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F : X -1-1-onto-> Y ) )  | 
						
						
							| 32 | 
							
								14 31
							 | 
							bitrd | 
							 |-  ( ph -> ( F e. ( X I Y ) <-> F : X -1-1-onto-> Y ) )  |