Metamath Proof Explorer


Theorem setcthin

Description: A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses setcthin.c
|- ( ph -> C = ( SetCat ` U ) )
setcthin.u
|- ( ph -> U e. V )
setcthin.x
|- ( ph -> A. x e. U E* p p e. x )
Assertion setcthin
|- ( ph -> C e. ThinCat )

Proof

Step Hyp Ref Expression
1 setcthin.c
 |-  ( ph -> C = ( SetCat ` U ) )
2 setcthin.u
 |-  ( ph -> U e. V )
3 setcthin.x
 |-  ( ph -> A. x e. U E* p p e. x )
4 eqid
 |-  ( SetCat ` U ) = ( SetCat ` U )
5 4 2 setcbas
 |-  ( ph -> U = ( Base ` ( SetCat ` U ) ) )
6 eqidd
 |-  ( ph -> ( Hom ` ( SetCat ` U ) ) = ( Hom ` ( SetCat ` U ) ) )
7 elequ2
 |-  ( x = z -> ( p e. x <-> p e. z ) )
8 7 mobidv
 |-  ( x = z -> ( E* p p e. x <-> E* p p e. z ) )
9 3 adantr
 |-  ( ( ph /\ ( y e. U /\ z e. U ) ) -> A. x e. U E* p p e. x )
10 simprr
 |-  ( ( ph /\ ( y e. U /\ z e. U ) ) -> z e. U )
11 8 9 10 rspcdva
 |-  ( ( ph /\ ( y e. U /\ z e. U ) ) -> E* p p e. z )
12 mofmo
 |-  ( E* p p e. z -> E* f f : y --> z )
13 11 12 syl
 |-  ( ( ph /\ ( y e. U /\ z e. U ) ) -> E* f f : y --> z )
14 2 adantr
 |-  ( ( ph /\ ( y e. U /\ z e. U ) ) -> U e. V )
15 eqid
 |-  ( Hom ` ( SetCat ` U ) ) = ( Hom ` ( SetCat ` U ) )
16 simprl
 |-  ( ( ph /\ ( y e. U /\ z e. U ) ) -> y e. U )
17 4 14 15 16 10 elsetchom
 |-  ( ( ph /\ ( y e. U /\ z e. U ) ) -> ( f e. ( y ( Hom ` ( SetCat ` U ) ) z ) <-> f : y --> z ) )
18 17 mobidv
 |-  ( ( ph /\ ( y e. U /\ z e. U ) ) -> ( E* f f e. ( y ( Hom ` ( SetCat ` U ) ) z ) <-> E* f f : y --> z ) )
19 13 18 mpbird
 |-  ( ( ph /\ ( y e. U /\ z e. U ) ) -> E* f f e. ( y ( Hom ` ( SetCat ` U ) ) z ) )
20 4 setccat
 |-  ( U e. V -> ( SetCat ` U ) e. Cat )
21 2 20 syl
 |-  ( ph -> ( SetCat ` U ) e. Cat )
22 5 6 19 21 isthincd
 |-  ( ph -> ( SetCat ` U ) e. ThinCat )
23 1 22 eqeltrd
 |-  ( ph -> C e. ThinCat )