Step |
Hyp |
Ref |
Expression |
1 |
|
setcthin.c |
|- ( ph -> C = ( SetCat ` U ) ) |
2 |
|
setcthin.u |
|- ( ph -> U e. V ) |
3 |
|
setcthin.x |
|- ( ph -> A. x e. U E* p p e. x ) |
4 |
|
eqid |
|- ( SetCat ` U ) = ( SetCat ` U ) |
5 |
4 2
|
setcbas |
|- ( ph -> U = ( Base ` ( SetCat ` U ) ) ) |
6 |
|
eqidd |
|- ( ph -> ( Hom ` ( SetCat ` U ) ) = ( Hom ` ( SetCat ` U ) ) ) |
7 |
|
elequ2 |
|- ( x = z -> ( p e. x <-> p e. z ) ) |
8 |
7
|
mobidv |
|- ( x = z -> ( E* p p e. x <-> E* p p e. z ) ) |
9 |
3
|
adantr |
|- ( ( ph /\ ( y e. U /\ z e. U ) ) -> A. x e. U E* p p e. x ) |
10 |
|
simprr |
|- ( ( ph /\ ( y e. U /\ z e. U ) ) -> z e. U ) |
11 |
8 9 10
|
rspcdva |
|- ( ( ph /\ ( y e. U /\ z e. U ) ) -> E* p p e. z ) |
12 |
|
mofmo |
|- ( E* p p e. z -> E* f f : y --> z ) |
13 |
11 12
|
syl |
|- ( ( ph /\ ( y e. U /\ z e. U ) ) -> E* f f : y --> z ) |
14 |
2
|
adantr |
|- ( ( ph /\ ( y e. U /\ z e. U ) ) -> U e. V ) |
15 |
|
eqid |
|- ( Hom ` ( SetCat ` U ) ) = ( Hom ` ( SetCat ` U ) ) |
16 |
|
simprl |
|- ( ( ph /\ ( y e. U /\ z e. U ) ) -> y e. U ) |
17 |
4 14 15 16 10
|
elsetchom |
|- ( ( ph /\ ( y e. U /\ z e. U ) ) -> ( f e. ( y ( Hom ` ( SetCat ` U ) ) z ) <-> f : y --> z ) ) |
18 |
17
|
mobidv |
|- ( ( ph /\ ( y e. U /\ z e. U ) ) -> ( E* f f e. ( y ( Hom ` ( SetCat ` U ) ) z ) <-> E* f f : y --> z ) ) |
19 |
13 18
|
mpbird |
|- ( ( ph /\ ( y e. U /\ z e. U ) ) -> E* f f e. ( y ( Hom ` ( SetCat ` U ) ) z ) ) |
20 |
4
|
setccat |
|- ( U e. V -> ( SetCat ` U ) e. Cat ) |
21 |
2 20
|
syl |
|- ( ph -> ( SetCat ` U ) e. Cat ) |
22 |
5 6 19 21
|
isthincd |
|- ( ph -> ( SetCat ` U ) e. ThinCat ) |
23 |
1 22
|
eqeltrd |
|- ( ph -> C e. ThinCat ) |