Metamath Proof Explorer


Theorem setlikespec

Description: If R is set-like in A , then all predecessor classes of elements of A exist. (Contributed by Scott Fenton, 20-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion setlikespec
|- ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) e. _V )

Proof

Step Hyp Ref Expression
1 df-rab
 |-  { x e. A | x R X } = { x | ( x e. A /\ x R X ) }
2 vex
 |-  x e. _V
3 2 elpred
 |-  ( X e. A -> ( x e. Pred ( R , A , X ) <-> ( x e. A /\ x R X ) ) )
4 3 abbi2dv
 |-  ( X e. A -> Pred ( R , A , X ) = { x | ( x e. A /\ x R X ) } )
5 1 4 eqtr4id
 |-  ( X e. A -> { x e. A | x R X } = Pred ( R , A , X ) )
6 5 adantr
 |-  ( ( X e. A /\ R Se A ) -> { x e. A | x R X } = Pred ( R , A , X ) )
7 seex
 |-  ( ( R Se A /\ X e. A ) -> { x e. A | x R X } e. _V )
8 7 ancoms
 |-  ( ( X e. A /\ R Se A ) -> { x e. A | x R X } e. _V )
9 6 8 eqeltrrd
 |-  ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) e. _V )