Step |
Hyp |
Ref |
Expression |
1 |
|
opex |
|- <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. _V |
2 |
1
|
a1i |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. _V ) |
3 |
|
eqidd |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) |
4 |
|
setsstruct2 |
|- ( ( ( G Struct X /\ E e. V /\ I e. NN ) /\ <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) -> ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) |
5 |
3 4
|
mpdan |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) |
6 |
|
breq2 |
|- ( y = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. -> ( ( G sSet <. I , E >. ) Struct y <-> ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
7 |
2 5 6
|
spcedv |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> E. y ( G sSet <. I , E >. ) Struct y ) |