Step |
Hyp |
Ref |
Expression |
1 |
|
setsid.e |
|- E = Slot ( E ` ndx ) |
2 |
|
setsval |
|- ( ( W e. A /\ C e. V ) -> ( W sSet <. ( E ` ndx ) , C >. ) = ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ) |
3 |
2
|
fveq2d |
|- ( ( W e. A /\ C e. V ) -> ( E ` ( W sSet <. ( E ` ndx ) , C >. ) ) = ( E ` ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ) ) |
4 |
|
resexg |
|- ( W e. A -> ( W |` ( _V \ { ( E ` ndx ) } ) ) e. _V ) |
5 |
4
|
adantr |
|- ( ( W e. A /\ C e. V ) -> ( W |` ( _V \ { ( E ` ndx ) } ) ) e. _V ) |
6 |
|
snex |
|- { <. ( E ` ndx ) , C >. } e. _V |
7 |
|
unexg |
|- ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) e. _V /\ { <. ( E ` ndx ) , C >. } e. _V ) -> ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) e. _V ) |
8 |
5 6 7
|
sylancl |
|- ( ( W e. A /\ C e. V ) -> ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) e. _V ) |
9 |
1 8
|
strfvnd |
|- ( ( W e. A /\ C e. V ) -> ( E ` ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ) = ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ` ( E ` ndx ) ) ) |
10 |
|
fvex |
|- ( E ` ndx ) e. _V |
11 |
10
|
snid |
|- ( E ` ndx ) e. { ( E ` ndx ) } |
12 |
|
fvres |
|- ( ( E ` ndx ) e. { ( E ` ndx ) } -> ( ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) |` { ( E ` ndx ) } ) ` ( E ` ndx ) ) = ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ` ( E ` ndx ) ) ) |
13 |
11 12
|
ax-mp |
|- ( ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) |` { ( E ` ndx ) } ) ` ( E ` ndx ) ) = ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ` ( E ` ndx ) ) |
14 |
|
resres |
|- ( ( W |` ( _V \ { ( E ` ndx ) } ) ) |` { ( E ` ndx ) } ) = ( W |` ( ( _V \ { ( E ` ndx ) } ) i^i { ( E ` ndx ) } ) ) |
15 |
|
disjdifr |
|- ( ( _V \ { ( E ` ndx ) } ) i^i { ( E ` ndx ) } ) = (/) |
16 |
15
|
reseq2i |
|- ( W |` ( ( _V \ { ( E ` ndx ) } ) i^i { ( E ` ndx ) } ) ) = ( W |` (/) ) |
17 |
|
res0 |
|- ( W |` (/) ) = (/) |
18 |
16 17
|
eqtri |
|- ( W |` ( ( _V \ { ( E ` ndx ) } ) i^i { ( E ` ndx ) } ) ) = (/) |
19 |
14 18
|
eqtri |
|- ( ( W |` ( _V \ { ( E ` ndx ) } ) ) |` { ( E ` ndx ) } ) = (/) |
20 |
19
|
a1i |
|- ( ( W e. A /\ C e. V ) -> ( ( W |` ( _V \ { ( E ` ndx ) } ) ) |` { ( E ` ndx ) } ) = (/) ) |
21 |
|
elex |
|- ( C e. V -> C e. _V ) |
22 |
21
|
adantl |
|- ( ( W e. A /\ C e. V ) -> C e. _V ) |
23 |
|
opelxpi |
|- ( ( ( E ` ndx ) e. _V /\ C e. _V ) -> <. ( E ` ndx ) , C >. e. ( _V X. _V ) ) |
24 |
10 22 23
|
sylancr |
|- ( ( W e. A /\ C e. V ) -> <. ( E ` ndx ) , C >. e. ( _V X. _V ) ) |
25 |
|
opex |
|- <. ( E ` ndx ) , C >. e. _V |
26 |
25
|
relsn |
|- ( Rel { <. ( E ` ndx ) , C >. } <-> <. ( E ` ndx ) , C >. e. ( _V X. _V ) ) |
27 |
24 26
|
sylibr |
|- ( ( W e. A /\ C e. V ) -> Rel { <. ( E ` ndx ) , C >. } ) |
28 |
|
dmsnopss |
|- dom { <. ( E ` ndx ) , C >. } C_ { ( E ` ndx ) } |
29 |
|
relssres |
|- ( ( Rel { <. ( E ` ndx ) , C >. } /\ dom { <. ( E ` ndx ) , C >. } C_ { ( E ` ndx ) } ) -> ( { <. ( E ` ndx ) , C >. } |` { ( E ` ndx ) } ) = { <. ( E ` ndx ) , C >. } ) |
30 |
27 28 29
|
sylancl |
|- ( ( W e. A /\ C e. V ) -> ( { <. ( E ` ndx ) , C >. } |` { ( E ` ndx ) } ) = { <. ( E ` ndx ) , C >. } ) |
31 |
20 30
|
uneq12d |
|- ( ( W e. A /\ C e. V ) -> ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) |` { ( E ` ndx ) } ) u. ( { <. ( E ` ndx ) , C >. } |` { ( E ` ndx ) } ) ) = ( (/) u. { <. ( E ` ndx ) , C >. } ) ) |
32 |
|
resundir |
|- ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) |` { ( E ` ndx ) } ) = ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) |` { ( E ` ndx ) } ) u. ( { <. ( E ` ndx ) , C >. } |` { ( E ` ndx ) } ) ) |
33 |
|
un0 |
|- ( { <. ( E ` ndx ) , C >. } u. (/) ) = { <. ( E ` ndx ) , C >. } |
34 |
|
uncom |
|- ( { <. ( E ` ndx ) , C >. } u. (/) ) = ( (/) u. { <. ( E ` ndx ) , C >. } ) |
35 |
33 34
|
eqtr3i |
|- { <. ( E ` ndx ) , C >. } = ( (/) u. { <. ( E ` ndx ) , C >. } ) |
36 |
31 32 35
|
3eqtr4g |
|- ( ( W e. A /\ C e. V ) -> ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) |` { ( E ` ndx ) } ) = { <. ( E ` ndx ) , C >. } ) |
37 |
36
|
fveq1d |
|- ( ( W e. A /\ C e. V ) -> ( ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) |` { ( E ` ndx ) } ) ` ( E ` ndx ) ) = ( { <. ( E ` ndx ) , C >. } ` ( E ` ndx ) ) ) |
38 |
13 37
|
eqtr3id |
|- ( ( W e. A /\ C e. V ) -> ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ` ( E ` ndx ) ) = ( { <. ( E ` ndx ) , C >. } ` ( E ` ndx ) ) ) |
39 |
10
|
a1i |
|- ( ( W e. A /\ C e. V ) -> ( E ` ndx ) e. _V ) |
40 |
|
fvsng |
|- ( ( ( E ` ndx ) e. _V /\ C e. V ) -> ( { <. ( E ` ndx ) , C >. } ` ( E ` ndx ) ) = C ) |
41 |
39 40
|
sylancom |
|- ( ( W e. A /\ C e. V ) -> ( { <. ( E ` ndx ) , C >. } ` ( E ` ndx ) ) = C ) |
42 |
38 41
|
eqtrd |
|- ( ( W e. A /\ C e. V ) -> ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ` ( E ` ndx ) ) = C ) |
43 |
3 9 42
|
3eqtrrd |
|- ( ( W e. A /\ C e. V ) -> C = ( E ` ( W sSet <. ( E ` ndx ) , C >. ) ) ) |